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ABSTRACT
In a selective assembly system, mismatched products can pass inspections due to the flexibility of
product quality grades. However, theywill be sold at discounted prices leading to a revenue decline.
Hence, it is critical to design an appropriate scheduling policy for better matching to maximise the
system quality-related revenue. In this paper, we propose aWaiting for Closest Quality Matching Pol-
icy (WCQMP), which allows postponing the assembly processwithin thewaiting threshold. And once
the postpone is finished, the closest quality parts will be selected to match. The other two poli-
cies, Random Matching Policy (RMP) and Closest Quality Matching Policy (CQMP), are also proposed
as comparisons. We construct Markov chain models for small systems and develop approximation
methodologies for larger systems to analyze the performance under the policies. Comparisons of
different scheduling policies and the performance analysis of WCQMP are carried out in numer-
ical studies. Our findings indicate that nearly in all the systems, WCQMP, CQMP performs better
than RMP. And when system and policy parameters are properly designed, WCQMP is more supe-
rior by improving assembly quality without overly sacrificing system throughput, thereby increasing
quality-related revenue. Managerial insights are also provided for industrial practitioners to apply
WCQMPmore appropriately.
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1. Introduction

Assembly quality dominates the company’s ability to
maximise its return on investment. Manufacturing high-
quality products is a key issue for a company’s success
in the competitive market. Two or more components
are usually assembled to make a complex final product.
Because of random variations in the manufacturing pro-
cess, it is impossible to produce the components with the
same characteristics even if they are generated on the
same production line (Ju, Li, and Deng 2017). Hence,
selective assembly is employed to assemble completely
interchangeable within corresponding matching groups
and achieve precision assemblies from relatively low pre-
cision components (Liu et al. 2019). It has been widely
applied in many manufacturing industries (i.e. machin-
ery manufacturing, automobile, electronic industry).

One example for selective assembly systems may
come from the semiconductor production line (Li
et al. 2012). Semiconductor manufacturing incorpo-
rates front-end processing and back-end processing,
which are usually implemented separately in different
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factories. Semiconductor Assembly and Test Manufac-
turing belong to Back-end processing. In the assembly
process, dies are assembled into chipsets. In the test pro-
cess, the chipsets are inspected to determine whether
they can execute desired functions and then categorised
into different bins based on their performance levels and
product types. The chipsets in different bins are then can
be assembled with other parts with different bin levels
together to form packaged integrated circuit (IC) prod-
ucts that have different performance levels. Those IC
products will be applied in high-performance computing
servers, personal computers, or some simple electronic
devices based on the levels of performance caused by
combining different bin-level parts.

The policy for matching different bins in the assem-
bly process dynamically is essential. Firstly, the revenue
generated by different levels of final products will have a
great difference, which makes that an effective policy can
take significant revenue to the line. Secondly, rather than
storing a large volume of Works-In-Process (WIP) in
other industries, due to the high value of semiconductor
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products, the semiconductor production line usually has
finite and relatively small buffers. It is helpful for the sys-
tem to keep a relatively shorter cycle time to respond
to the marketing changes and provide a quick response
to customers’ demands. However, with small invento-
ries, the static matching policy (see, for example, papers
by Kannan, Jayabalan, and Jeevanantham 2003; Lanza,
Haefner, and Kraemer 2015; Liu et al. 2019) that needs to
generate a large quantity ofWIP to do deterministic opti-
mal matching becomes unacceptable, and the dynamic
control policy is plausible.

In one of the semiconductor factories we investigated,
managers have struggled with finding proper dynamic
matching policies. Some existing policies, such as select-
ing the closest quality group to match, have been applied.
Improvement is achieved. But they still urgently need
to develop new ways to further reduce cycle time and
improve product quality, thereby improving the eco-
nomic benefits of the company due to intense competi-
tion in the market. The idea that whether we can put off
the assembly process for a while to improve the assembly
efficiency by matching the mating components precisely
is discussed. Motivated by this prospect, we began to
study new types of control policies.

Actually, the discussion of the new policies is also con-
siderable for other production lines. Another example
could be in battery assembly manufacturing for electric
vehicles (Ju et al. 2014). Multiple battery cells need to be
welded within a tight product envelope to make batter-
ies. Cells are partitioned into groups (or bins) according
to their dimensions and stacked into sections (or mod-
ules), and then connected through welding or mechan-
ical joints. The assembly clearance requirements for cell
dimensions within a single section (or module) are vari-
ous for batteries with different quality levels. In practice,
batteries of flexible quality grades are employed in diverse
electric vehicles with prices of discrepancy. High-quality
batteries whose battery cells are perfectly aligned will
be used to manufacture premium electric vehicles with
a longer continue voyage course. Batteries with inaccu-
rate matches will be used to produce lower-grade electric
vehicles with a less long continue voyage course. In such a
system, the selective assembly can guarantee that the cells
from the same group are assembled. However, whether
the selective technique will genuinely take benefits to the
system is mainly determined by a proper design of the
scheduling policy. Different designs of scheduling policy
for matching operations may generate different quanti-
ties of various quality-level batteries, thus taking diverse
quality-related revenue to the electric vehicle manufac-
turers.

In this work, we propose a new type of policy named
Waiting for Closest Quality Matching Policy (WCQMP)
for a dynamic and uncertain production environment.

This policy allows putting off the assembly process within
the waiting threshold so that the desirable mating part
will arrive in place with a higher probability. And thus,
we have more chances to obtain high-quality assemblies.
When the waiting period is over, the mating part with
the closest quality to the current main part is selected
for assembling. To our best knowledge, there is no
research to realise this idea that can address the trade-offs
between productivity and quality in selective assembly
systems. The other two policies, RandomMatching Policy
(RMP) and Closest Quality Matching Policy (CQMP) are
also proposed as comparisons. RMP prioritises mating
parts according to their random arrival sequence. CQMP
selects the part belonging to the closest quality grade
group to match if the corresponding matching part is
not available. These two comparable policies are the only
dynamic policies proposed in the literature (Ju, Li, and
Deng 2017) for selective production lines. Specifically, we
first construct mathematical models for selective assem-
bly systemswith Bernoulli machines and finite buffers for
the three policies. Then, we develop the Markov chain
approach and approximation methods for small systems
and larger systems under three policies, respectively, to
evaluate the selective assembly system quality-related
revenue. And we conduct numerical studies to investi-
gate howpivotal systemandpolicy parameters impact the
performance of the proposed policies.

The main contributions of the work include the fol-
lowing aspects: (1) we propose a novel scheduling policy
named WCQMP for matching operations, which con-
siders potential waiting in a dynamic and uncertain
selective assembly environmentwith unreliable Bernoulli
machines and finite buffers. This innovative policy has
not been investigated in other research. By comparisons
with the other two policies, RMP and CQMP, WCQMP
can show its superiority nearly in all systems when
a trade-off between the quality improvement and the
throughput impediment is achieved. (2) we develop exact
and approximation performance measurement method-
ologies under all policies to evaluate the system quality-
related revenue. Especially, we contribute by providing
approximation methods integrating decomposition and
aggregation ideas for selective assembly systems imple-
menting the scheduling policy WCQMP. (3) By numer-
ical experiments, we propose some interesting insights
that can provide industrial practitioners some guidelines
about employing the proposed policy WCQMP. On the
one hand, we reveal the features for the selective assem-
bly lines where the proposed policy can help the systems
to improve more of their revenue. For example, when a
real selective assembly system with identical buffers and
nonidenticalmachine reliability follows themachine reli-
ability patternwhere themain line and final assembly line
machines reliability are always equal and smaller than
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that of mating line machines, it could be a better choice
to apply our policy WCQMP for getting higher revenue.
On the other hand, we suggest the adjustment ways to the
policy when a system’s states are changed. For example,
managers could set the waiting threshold with a larger
value to accommodate the improvement of the mating
line or final assembly line efficiency. If the main line is
aging during the operation, the waiting threshold should
be increased to obtain maximal revenue.

The remainder of this paper is organised as fol-
lows. In Section 2, related literature is reviewed to
find out research gaps and motivation of this work. In
Section 3, we formulate the problem with some assump-
tions and introduce the selection matching policies. The
performance evaluation methods for different scales of
selective assembly systems are presented in Section 4.
Section 5 conducts numerical experiments to verify the
convergence and accuracy of proposed methods. The
results of the policies performance analysis are also sum-
marised in this section. Finally, Section 6 gives con-
clusions. Some details of the performance evaluation
methods and numerical examples are provided in the
Appendices.

2. Literature review

Research on selective assembly systems has mainly
focused on two streams in general. Literature concerning
the first stream mainly deals with choosing classifica-
tion criteria to partition the parts to be mated appropri-
ately and optimising the partitioning. The second stream
focuses on matching operation optimisation to achieve
some goals, such as minimising assembly variation, mis-
matches, or maximising throughput.

The first stream has been extensively studied since
the paper (Mansoor 1961) was published. By establish-
ing tolerance specifications related to natural process
tolerances, they develop the design and manufactur-
ing plans to determine the component classification and
corresponding production quantities. Kannan and Jaya-
balan (2001) present a two-stage grouping method for a
complex ball bearing assembly with three mating parts.
Chan and Linn (1998) incorporate the same concept with
another idea of skipping certain portions of components
to form more mating groups. Liu and Liu (2017) intro-
duce a method of determining the number of groups and
the range of dimensional tolerances for each component.
Mease, Nair, and Sudjianto (2004) describe the selective
assembly problem as a statistical formulation and develop
optimal binning strategies under several loss functions
and distributional assumptions.

The second stream of works for matching operation
issues in the selective assembly has attained growing
attention within the academic community. Different

methods have been proposed to release the trouble
taken by multiple quality levels in the selective produc-
tion line. For example, the latest paper (Clottey and
Benton 2020) studies the use of inexpensive interme-
diary components to ensure that all mating compo-
nents are matched with acceptable clearance and to min-
imise shortage and surplus component costs. Liu et al.
(2013) develop a comprehensive quality control model to
improve the matchable degree of multiple components’
selective assembly process. Colledani, Ebrahimi, and
Tolio (2014) present an integrated quality and production
logistics model to properly design selective and adaptive
assembly systems, significantly reducing the defective
assemblies.

A substantial amount of research effort has been
devoted to static scheduling policy, which addresses the
matching optimisation problem in a deterministic way.
They assume that there are lots ofWIP parts to be assem-
bled and try to match batch parts at a given time. Some
optimisation goals, such asminimising the assembly vari-
ation and mismatch, are achieved by determining the
optimal combination of components with widely used
genetic algorithms in certain work, such as Kannan, Jaya-
balan, and Jeevanantham (2003), Jeevanantham, Chai-
tanya, andRajeshkannan (2019), andLanza,Haefner, and
Kraemer (2015). And Liu et al. (2019) propose a discrete
fireworks optimisation algorithm to maximise assembly
efficiency. Some non-metaheuristics algorithms are also
proposed to optimise the combination of groups. Tan and
Wu (2012) consider the generalised concept of selective
assembly as two versions and develop related simula-
tion methods to solve them. Siva Rezaei Aderiani et al.
(2019) propose a non-metaheuristics algorithm for sheet
metal assemblies’ problems. This type of static policy
leads to rather high inventory levels and a long cycle time
certainly. Along with the popularisation of the lean man-
ufacturing concept, production systems prefer to keep a
relatively lowWIP and short production cycle, which can
be more flexible to adapt to customers’ demand changes.
In this context, the parts with different levels will remain
in the buffer for a short time, which makes that the WIP
in buffers captured within any step length of the opti-
misation period is limited. Therefore, static optimally
selection of bins in batches becomes unacceptable. Other
works began to study the dynamic scheduling policy to
optimally match finite and constantly changing bins in
a stochastic way. Existing literature suggests that there
are limitations to considering selective assembly systems
in such a stochastic manner. Ju, Li, and Deng (2017)
propose a selection policy for a two-component selec-
tive assembly system with unreliable machines and finite
buffers. Ju, Li, and Deng (2017) is themost closely related
published work to ours. The policy they proposed is to
choose the perfect matching parts when available. If no
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part of the corresponding group is available, the part
belonging to the highest quality group currently avail-
able is selected. Our work differs from theirs in the sense
that we propose the idea that when a good matching is
not available, waiting for a moment may achieve better
matching with a tolerable sacrifice of the total through-
put.We compare our method with RP and CQMP, which
are proposed in the previous study by Ju, Li, and Deng
(2017). And it can improve the system revenue when
making a trade-off between the product quality improve-
ment and the throughput impediment, which is bound to
have important theoretical and practical significance.

In the field of onlinemachine scheduling, some papers
have considered the waiting strategy based on a rolling
horizon periodic approach. The set of jobs to be sched-
uled in the waiting window enters the scheduling pro-
cess window based on their waiting thresholds deter-
mined by the release dates. Suwa (2007) proposes a
new online scheduling policy considering the time of
rescheduling when the cumulative delays reach the wait-
ing threshold. Zhang (2001) takes waiting into consid-
eration when developing online scheduling algorithms
for NP-hard problems. Numerous studies consider the
problem of scheduling a set of jobs subject to release
dates to achieve some optimisation objectives. Koski-
nen et al. (2020) investigate the scheduling of Printed
Circuit Board (PCB) assembly jobs to minimise total
job tardy times based on the predefined release and
due dates. Yuan, Ng, and Cheng (2015) and Dover and
Shabtay (2016) study two-agent scheduling on a sin-
gle machine with release dates. Yuan, Ng, and Cheng
(2015) also take preemption into consideration to min-
imise the maximum lateness. Vélez-Gallego, Maya, and
Montoya-Torres (2016) and He et al. (2016) deal with a
single-machine scheduling problem with release dates.
The difference is that sequence-dependent setup times
are also modelled in the former study to minimise the
maximum makespan, while He et al. (2016) consider
rejections additionally to minimise both the makespan
and the total rejection cost.

Performance analysis of production systems with
unreliable machines and finite buffers has been inves-
tigated far more maturely than in selective assem-
bly, which lays the foundations for evaluating selec-
tive assembly systems. Analytical methods are exten-
sively introduced for production systems. One of the
most noteworthy works was the monograph done by
Li and Meerkov (2009), which explicitly and systemat-
ically studies steady-state performance evaluation, sys-
tem properties, and the improvement of various pro-
duction lines. For Bernoulli serial production lines, Yan
et al. (2021) propose an improved aggregation method
by extending the traditional two-machine aggregation

building blocks to general multimachine ones. Wang
et al. (2019) deal with Bernoulli serial lines with batch-
ing machines and finite buffers and develop analytical
methods for system performance and properties analy-
sis. Existing literature, such as Jia et al. (2016) and Ching,
Meerkov, andZhang (2008), has focused on the analytical
approximation approach on evaluating general assem-
bly systems with unreliable machines and finite buffers.
Zhang et al. (2021) evaluate manufacturing systems with
both manual operations and collaborative robot assem-
bly by introducing a unified model of productivity and
ergonomic performances. Wang et al. (2018) investigate
an approximate decomposition method for evaluating
non-homogeneous assembly systems with multiple fail-
ure modes, finite buffers, and a fixed assembly propor-
tion. Analytical methods for selective assembly system
evaluation are rare except for the two-level decomposi-
tion approaches proposed by Colledani, Ebrahimi, and
Tolio (2014) and Ju, Li, and Deng (2017).

3. Problem description and formulation

In this section, we consider a two-component selective
assembly system. As illustrated in Figure 1, the circles are
the machines, and the rectangles represent the buffers.
The assembly system consists of three machines,m1,m2,
and m0, and two buffers, b1 and b2. Machine m1 and
buffer b1 form the main line. The mating line is made up
ofmachinem2 and buffer b2. Machinem0 is the assembly
machine in the final assembly line.

The concrete system description is provided as fol-
lows. We consider a typical automatic selection assembly
line that can collect the group label information of the
buffer parts. Atmachinem1, themain parts are processed
and categorised into groups 1 to G with the probabili-
ties q1 to qG based on their quality levels. Independently,
machine m2 produces mating parts. Analogously, the
mating parts are partitioned into groups 1 to G with the
probabilities g1 to gG. The quality order of groups 1 to G
is: 1 > 2 > 3 > · · · > G, which means that group 1 rep-
resents the highest quality, and group G is the lowest. In
this way,

G∑
i=1

qi =
G∑
i=1

gi = 1.

Only mating parts within the mating line are selected
according to the main part. Selective assembly is often
used in systems with high assembly precision require-
ments. Three possible scheduling policies for match-
ing operations are proposed as follows to guarantee
assembly quality and improve quality-related revenue
further.
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Figure 1. Selective assembly system.

• Policy I (RP, Random Matching Policy): select
the mating part according to their random arrival
sequence to match.

• Policy II (CQMP, Closest Quality Matching Policy):
select the mating part belonging to the closest quality
grade group to match.

• Policy III (WCQMP, Waiting for Closest Quality
Matching Policy): wait for the coming of the desirable
closest quality mating part to match.

The latter two kinds of policies are interpreted in detail
below. We denote the current main part with quality
grade i as Ai, and the mating part with quality grade i
as Bi, i = 1, 2, . . . , G. For Policy II, mating part Bi is
selected to assemble if available. If not, the mating part
with the closest quality grade to Ai is selected. High-
quality mating parts Bi−n and low-quality mating parts
Bi+n will be selected with equal probability. That is, the
matching parts are selected for assembly according to the
following priorities:

If G is odd,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bi−1 = Bi+1 > Bi−2 = Bi+2
> . . . > B1 = B2i+1 > B2i+2
> B2i+3
> . . . > BG,

if i < (G + 1)/2,

Bi−1 = Bi+1 > Bi−2 = Bi+2
> Bi−3 = Bi+3
> . . . > B1 = BG,

if i = (G + 1)/2,

Bi−1 = Bi+1 > Bi−2 = Bi+2
> . . . > B2i−G =
BG > B2i−G−1 > B2i−G−2
> . . . > B1,

if i > (G + 1)/2.

If G is even,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Bi−1 = Bi+1 > Bi−2 = Bi+2
> . . . > B1 = B2i+1
> B2i+2 > B2i+3 > . . . > BG,

if i ≤ G/2,

Bi−1 = Bi+1 > Bi−2 = Bi+2
> . . . > B2i−G = BG > B2i−G−1

> B2i−G−2 > . . . > B1,
if i > G/2.

For Policy III, from the time when a main part becomes
the bottom (the 1st) part in the buffer b1, the maximum
allowable cycle before starting the assembly process is
constrained by buffer b2 occupancy status and thewaiting
threshold (WT) that is no more than buffer b2 capacity.
Note that the current main part is Ai. The mating part Bi
is selected to assemble if available. The buffer b2 is not
empty, and the current occupancy is less than the wait-
ing threshold, but there is no matching mating part Bi,
then the current main part is allowed to wait. Once Bi is
generated within the waiting threshold, the assembly is
performed. The closest quality mating part is selected to
assemble if there is still no available Bi while the buffer b2
occupancy has reached the waiting threshold. The exe-
cution procedure is illustrated in Figure 2. And when the
waiting threshold of Policy III takes the value of one, that
is, not waiting, it will have the same effect as Policy II.

To further characterise the system, we introduce the
following assumptions relevant to the machines, the
buffers, and their interactions.

• Allmachines are Bernoulli machines. The status of the
machine is determined at the beginning of each time
slot. In each cycle, machine mi (i = 0,1,2) is up with
probability pi and down with probability 1 − pi.

• All machines have a constant and identical process-
ing time that is defined as the machine’s cycle time.
The time is slotted with the slot duration equal to the
cycle time of the machines. For simplicity, we stan-
dardise the cycle time to be one- time unit without
losing generality.

• The buffer capacities are Ni, 0 < Ni < ∞, both being
finite. The status of the buffer is determined at the end
of each time slot.

• Machine mi(i = 1, 2) is blocked when mi is up, and
buffer bi is full, and the mating machine m0 does not
take a part from bi at the beginning of a time slot.
Machinem0 is never blocked.

• The assemblymachinem0 is starvedwhen either b1, or
b2, or both are empty.Machinem0 is also starvedwhen
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Figure 2. The operation procedure of Policy III.

buffer b2 current occupancy is less than the specified
waiting threshold and not empty, but there is no avail-
able matching mating part to assemble. It is assumed
that machinesm1 andm2 are never starved.

• The produced parts will not be scrapped throughout
the process.

Remark 1:We assume that the closer the quality grades
of the assembled main and mating parts, the higher the
finished products’ quality. Many assembly lines in facto-
ries can reflect this. Taking the assembly of power steering
sleeves and shafts as an example, the clearance between
the shaft and sleeve must fall within the acceptable toler-
ance range. Therefore, a shaft with a larger-than-average
outer diameter and a sleeve larger-than-average inner
diameter would be matched together (Coullard, Gam-
ble, and Jones 1998). That is, a sleeve and shaft with a
closer quality level can be assembled to make an accept-
able assembly. Furthermore, we allow the main parts to
wait within the waiting threshold to manufacture more
matched assemblies.

Remark 2: The assembly system inmany factories con-
sists of the main line and mating line. The mating parts
in the mating line need to be assembled onto the main
parts in the main line. For example, in the automotive
final assembly workshop, the wiring harnesses, pipes, and
central control equipment in the car interiors line will

be assembled to the car body. Generally, the mating sub-
components are small in size and large in quantity. So,
it is easier and practical to change the mating subcom-
ponents’ sequence. Therefore, we assume that only the
mating part can be selected based on the main part.

Remark 3: In this paper, we use the Bernoulli machine
reliability model. Such a model is practical, especially for
describing assembly systems where the machine’s down-
time is typically very short and comparable to the cycle
time. There have been many studies on the successful
application of Bernoulli models in manufacturing sys-
tems, such as Feng et al. (2018), Lee, Li, and Horst
(2018a), Su et al. (2017), etc. We first apply the relatively
representative but straightforward Bernoulli machine
model to our study. The analysis will be extended tomore
complex reliability models, such as geometric, exponen-
tial machine reliability models in future work.

In such a selective assembly system, the main perfor-
mance measurement index is the expected total revenue
(TR) of the finished assemblies in a cycle at a steady state,
which is defined as follows:

TR =
G−1∑
i=0

Yi · PRi, (1)

where PRi represents the PR of category i product assem-
bled with components with a gap of i quality grades,
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and Yi represents the unit price of category i product.
We assume the matched product’s unit price Y0 = 1. By
introducing a discount factor a, based on category i prod-
uct’s unit price, category i + 1 product’s unit price is
100(1 − a)%(0 ≤ a ≤ 1) off. The goal of this research is
under different system parameter configurations to com-
pare the performance of the three scheduling policies and
conduct a performance analysis ofWCQMP to maximise
the total revenue.

4. The performance evaluationmethods

In this section, we develop Markov chain models for
three-machine three-group with small buffers systems
in Section 4.1. However, for larger systems, deriving the
exact solution of steady-state probabilities is not feasible
because of the dimensionality curse. Therefore, approx-
imation methods for three- and multi-machine multi-
group with large buffers systems are proposed in Sec-
tions 4.2 and 4.3, respectively, which are useful for prac-
tical systems. The exact results provided by the Markov
chain approach can avoid unclear observations caused
by the variations of approximation methods and help us
obtain more accurate theoretical findings.

4.1. Markov chainmodels for three-machine
three-groupwith small buffers systems

For three-machine (M = 3) three-group (G = 3) with
small buffers assembly lines, we develop Markov chain
models to obtain analytical solutions under three
scheduling policies. We denote the system state as
(t1 . . . tN1n1n2n3), where ti ∈ {0, 1, 2, 3}, i = 1, . . . ,N1
representing the part group number at the ith position
of buffer b1 (when there is no part at the ith position, let
ti = 0). The number of group j part in the buffer b2 is
denoted by nj = 1,2,3. nj is constrained by the inequality
n1 + n2 + n3≤N2. When j < i, if ti = 0, we must have
tj = 0. Furthermore, based on the defined state space, we
can obtain the number of system states as:

(
4N1 −

N1−1∑
i=1

Ci
N1−13

N1−i

)

×
(
1
2
N2
2(N2 + 1)(N2 + 2) +

N2∑
n=0

(−n2 + 1)

)
,

Then, we can derive the state transition probabil-
ity matrix. We take the most straightforward case
N1 = N2 = 2 as an example to illustrate the solution pro-
cess for the three policies. For Policy III, there are 130
states. Only partial states and transition probabilities are

Table 1. Partial states and transition probabilities for Policy III.

Initial state r New state s Transition rate Psr Condition

(ij100) (ij200) p2g1 i = 1, 2, 3, j = 2, 3
(ij010) (ij020) p2g2 i = 1, 2, 3, j = 1, 3
(ij001) (ij002) p2g3 i = 1, 2, 3, j = 1, 2
(ij100) (ij100) 1 − p2 i = 1, 2, 3, j = 2, 3
(0j100) (ij200) p1qip2g1 i = 1, 2, 3, j = 2, 3
(0j010) (ij010) p1qi(1 − p2) i = 1, 2, 3, j = 1, 3
(0j001) (0j001) (1 − p1)(1 − p2) i = 1, 2, 3, j = 1, 2
(0j100) (0j200) (1 − p1)p2g1 i = 1, 2, 3, j = 2, 3

spread out here, as shown in Table 1. There are 131 bal-
ance equations in total, including the total probability
equation. For illustration purposes, part of the balance
equations is included in Section A.1 of Appendix 1.

By solving the balance equations, we can derive the
analytical expressions of steady-state probabilities. We
assign P(i1i2j1j2j3) to the steady-state probability of each
state (i1i2j1j2j3). The steady-state probability that there is
a mating part differing from the current main part by i
quality grades in buffer b2 is denoted as Pi (i = 0,1,2).

For Policy III, the corresponding formulas for Pi
(i = 0,1,2) are as follows:

P0 =
3∑

i1=0

2∑
j1=1

∑
j2,j3∈{0,1}
0≤j2+j3≤2−j1

P(i11j1j2j3)

+
3∑

i1=0

2∑
j2=1

∑
j1,j3∈{0,1}
0≤j1+j3≤2−j2

P(i12j1j2j3)

+
3∑

i1=0

2∑
j3=1

∑
j1,j2∈{0,1}
0≤j1+j2≤2−j3

P(i13j1j2j3),

P1 =
3∑

i1=0

2∑
j2=1

P(i110j2(2 − j2))

+
3∑

i1=0

2∑
j1=1

P(i12j10(2 − j1))

+
3∑

i1=0

2∑
j2=1

P(i13(2 − j2)j20),

P2 =
3∑

i1=0
P(i11002) + P(i13200).

Note that details aboutMarkov chainmodels analyses for
Policy II and Policy II can be found in Section A.1 of
Appendix 1.

So far, we have obtained the production rates of the
three types of products PRi(i = 0, 1, 2). In turn, we can
obtain the following calculation formula for the expected
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total revenue of the finished products during a cycle in
steady state:

PRi = p0Pi, i = 0, 1, 2,

TR =
2∑

i=0
Yi · PRi. (2)

4.2. Approximationmethod for three-machine
multi-groupwith large buffers systems

For three-machine (M = 3) multi-group (G ≥ 3) and
large buffer capacities lines, the number of system states
to be enumerated increases exponentially as groups of
subcomponents and the buffer capacity increase in num-
ber. Markov chain model is intractable because of state-
space explosion. Therefore, in this section, we propose
decomposition-based approximation methods for three-
machine multi-group with large buffers systems under
three scheduling policies.

Based on the framework of the two-level decompo-
sition method proposed in Ju, Li, and Deng (2017), we
develop a decomposition method for analyzing selec-
tive assembly systems considering the potential wait-
ing in Policy III. In addition to the situation where the
upstream buffer is empty, the assembly machine will also
be starved and not fetch parts when the main part is
waiting within the waiting threshold. In other words,
the mismatch of the two sub-components will affect the
overall PR. Consequently, the PR of a selective assembly
system with proper delay is different from a typical selec-
tive assembly system without considering the potential
waiting.

We have revised the approximate method mentioned
in the literature (Ju, Li, and Deng 2017) for the typical
assembly system without waiting. Analogously, the first-
level decomposition decomposes the assembly line into
two overlapping serial lines (see Figure 3). The machine
mi

0 represents the assembly machine that is not starved
by the buffer bi and potential waiting. In this way, the

reliability of virtual machinesm1
0 andm

2
0 are represented

by p10 and p20, respectively, which need to be modified
to adapt to the potential waiting. Correspondingly, its
recursive procedure will also associate with the second-
level decomposition. The recursive process will be delin-
eated together with the second-level decomposition in
the following part.

According to the related analysis in the literature Ju, Li,
and Deng (2017), it is scientific to decompose the sub-
assembly line into two sub-lines for group u and group
Cu, u = 1, 2, . . . ,G (we denote all groups except group
u as group Cu, group Cu = groups 1&2& . . . & (u-1) &
(u+1) & . . . &G) (Shown in Figure 4). Machine m2 is
divided into two virtual machines, mu

2 and mCu
2 , which

manufacture group u and groups Cu mating parts sepa-
rately. Buffer b2 is decomposed into virtual buffer bu2 for
storing group u parts, and virtual buffer bCu

2 that contains
groups Cu parts. Two virtual machines mu

0 and mCu
0 are

used to approximate machine m0, fetching group u and
groups Cu mating parts respectively. Therefore, we need
to perform G times of decomposition in total. The uth
decomposition is corresponding to group u and group
Cu. The approximate method needs to perform the fol-
lowing steps to obtain the marginal probability estimated
value of group u part buffer occupancy status.

PROCEDURE 4.1

• Step 1: Initialise the parameters used to estimate the
marginal probability of buffer b2 occupancy status for
each group of parts.

• Step 2: For group u and group Cu, u = 1,2, . . . ,G,
(1) (1) Update the probability of virtual assembly

machines mu
0 and mCu

0 to be up based on the
marginal probability of buffer b2 occupancy sta-
tus for each group of parts.

(2) (2) Calculate the probability that the desirable
matching part is generated within the waiting
threshold, and the current main part is assembled
with it.

Figure 3. The first-level decomposition.
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Figure 4. The second-level decomposition.

(3) (3) Evaluate the marginal probabilities of buffer
occupancy status for group u parts.

(4) (4) Evaluate the probability that the waiting con-
ditions is satisfied, that is, the desirable matching
part is not available, and buffer b2’s current occu-
pancy is less than the waiting threshold but not
empty.

• Step 3: Repeat Step 2 until the convergence of the
marginal probability of buffer b2 occupancy status for
each group of parts.

We take the three-group case (G = 3) as an example to
introduce the above approximation method explicitly in
the following part. When G = 3, the sub-assembly line
is expectedly decomposed into two sub-lines for group u
and groupsCu, i = 1, 2, 3. Group u and groupsCu mating
parts are processed separately bymu

2 andmCu
2 , which are

two virtualmachines obtained by decomposingm2. Their
parameters pu2 and pCu

2 can be revealed as:

pu2 = p2gu, pCu
2 = p2(1 − gu), u = 1, 2, 3.

Correspondingly,machinem0 is decomposed into two
virtualmachinesmu

0 andm
Cu
0 , seising group u and groups

Cu mating parts respectively. Their efficiency parameters
are pu0 and pCu

0 . By the same token, pu0 and pCu
0 need to be

rewritten due to the potential waiting. Beforemaking cor-
rections, we introduce the decomposition of the buffer.
Two virtual buffers bu2 and b

Cu
2 substitute buffer b2, which

contains group u and groups Cu parts independently. To
facilitate the demonstration, we first define the following
symbols for the decomposed buffer state:

• Pui (i = 0, 1, . . . , N2, u = 1, 2, 3): Probability of there
are i group u parts in b2.

• PCu
i (i = 0, 1, . . . , N2, Cu ∈ {(1, 2), (1, 3), (2, 3)}):

Probability of there are i grouCu parts in b2.
• Puj,tCu=i(i = 0, 1, . . . , N2, j = 0,1, . . . , N2 – i,

(u,Cu)∈{(1,2,3), (2,1,3), (3,1,2)}): Probability of there

are j group u parts in b2 given i groups Cu parts
occupied.

• PCu
j,tu=i(i = 0, 1, . . . , N2, j = 0,1, . . . , N2 – i, (u,Cu)∈

{(1,2,3), (2,1,3), (3,1,2)}): Probability of there are j
groups Cu parts in b2 given i group u parts occupied.

Following the correlated analysis and hypothesis in Ju,
Li, andDeng (2017), we can obtain a closed-form formula
for estimating the number of groupu part in the buffer b2.
The process is as Equation (3):

Pu0,tCu=i = Q(pu2, p
u
0,N2 − i), i = 0, 1, . . . ,N2, (u,Cu)

∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}, (3)

where Q (x, y, N) represents the steady-state probabil-
ity that the buffer is empty in a two-machine Bernoulli
production line with machine parameters x and y, and
a buffer capacity of N. The specific calculation formula
from themonograph (Li andMeerkov 2009) is as follows:

Q(x, y,N) =

⎧⎪⎪⎨⎪⎪⎩
(1 − x)(1 − α)

1 − x
yα

N , if x �= y,

1 − x
N + 1 − x

, if x = y,

α(x, y) = x(1 − y)
y(1 − x)

. (4)

Again, based on the monograph (Li and Meerkov 2009),
we can get the conditional probability of the group u
part’s buffer occupancy as:

Puj,tCu=i = Q(pu2, p
u
0,N2 − i)

1 − pu0
[α(pu2, p

u
0)]

j, i = 0, 1, . . . ,N2,

j = 0, 1, . . . ,N2 − i, (u,Cu)

∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. (5)
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Finally, we can derive the marginal probability of the
group u part’s buffer occupancy as:

Puj =
N2−j∑
i=0

PCu
i · Puj,tCu=i, j = 0, 1, . . . ,N2,(u,Cu)

∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. (6)

Based on the above probability calculation, we intro-
duce the probability Puw that waiting conditions is satis-
fied, that is, the desirable matching part is not available,
and buffer b2’s current occupancy is less than the wait-
ing threshold but not empty. The expression of Puw is as
follows:

Puw = p0(1 − x1)quPu0 ·
WT−1∑
i=1

PCu
i , 1 ≤ WT ≤ N2, (u,Cu)

∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. (7)

In the above formula, x1 stands for the probability that
buffer b1 is empty, which can be obtained by the recur-
sive procedure 4.2 introduced in the following part. As
revealed in Lee, Zhao, et al. (2018b), the probability that
buffer bCu

2 contains i parts, and there are j parts in buffer
bu2 when a new part is produced by mu

2 and loaded into
the buffer, is formulated as P̃uj,tCu=i:

P̃u0,tCu=i = Q(pu2, p
u
0,N2 − i)

(1 − pu2)(1 − Q(pu0, p
u
2,N2 − i)

,

P̃uj,tCu=i = αjP̃u0,tCu=i,

i = 0, 1, . . . ,N2, j = 1, . . . ,N2 − i − 1,

(u,Cu) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. (8)

Making use of these probabilities, we can derive the
steady-state probability PuWT that the desirable match-
ing part is generated before the buffer b2 occupancy
reaches the waiting threshold, and the current main part
is assembled with it as

PuWT =
WT−1∑
i=1

WT−1∑
j=i

j−1∑
k=i

P̃u0,tCu=j · PCu
j (1 − P̃u0,tCu=k)P

Cu
k ,

1 ≤ WT ≤ N2, (u,Cu)

∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. (9)

So far, we can derive the revised parameters for virtual
machines. The recursive procedure can also be modified
to adapt to potential waiting to approximate marginal
probabilities. To describe the recursive procedure, in
addition to the symbols that have been explained above,
we introduce here x1 and x2 to represent the probabil-
ity that the buffers b1 and b2 are empty. Henceforth, the
recursive procedure can be formally explicated as:

PROCEDURE 4.2

• Step 1: Initialisation.

Pu0(0) = PCu
0 (0) = 1, (u,Cu)

∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)},
Puj (0) = PCu

j (0) = 0, j = 1, . . . ,N2, (u,Cu)

∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)},
PuWT(0) = 0, u = 1, 2, 3, 1 ≤ WT ≤ N2,

x1(0) = x2(0) = 0. (10)

• Step 2: Calculation of the occupancy status probability
of group 1 and group 2&3 parts in buffer b2.

(1) Calculate the probability of virtual machine m1
2,

mC1
2 and m1

0 to be up. Then, calculate the conditional
probability that the buffer b2 contains 0 group 1 part
when a new part is processed by machinem1

2 and loaded
into the buffer given i group 2&3 in b2.

p12 = p2g1,

pC1
2 = p2(g2 + g3),

p10(n + 1) = p0(1 − x1(n))(q1P10(n)(1 − P1w(n))

× (1 − P1WT(n)) + q1(1 − P10(n)) + q2(1 − P2w(n))

· (1 − P2WT(n))
(
1
2
P20(n)(P

3
0(n) + 1)

)
+ q3(1 − P3w(n))(1 − P3WT(n))P30(n)P

2
0(n)),

1 ≤ WT ≤ N2,

P̃10,tC1=i(n + 1) = Q(p12, p
1
0(n + 1),N2 − i)

(1−p12)(1 − Q(p10(n + 1), p12,N2 − i)
,

i = 0, 1, . . . ,N2. (11)

(2) Evaluate the probability that desirable matching
group 1 part is generated within the waiting threshold,
and the current main part is assembled with it. And
further evaluate the probability that b2 has j group 1 parts.

P1WT(n + 1) =
WT−1∑
i=1

WT−1∑
j=i

j−1∑
k=i

P̃10,tC1=j(n + 1)

· PC1
j (n)(1 − P̃10,tC1=k(n + 1))PC1

k (n), 1 ≤ WT ≤ N2,

P10,tC1=i(n + 1) = Q(p12, p
1
0(n + 1),N2 − i),

i = 0, 1, . . . ,N2,

P1j,tC1=i(n + 1) =
P10,tC1=i(n + 1)

1 − p10(n + 1)
[α(p12, p

1
0(n + 1))]j,
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i = 0, 1, . . . ,N2 − 1, j = 1, . . . ,N2 − i,

P1j (n + 1) =
N2−j∑
i=0

PC1
i (n) · PC1

j,tC1=i(n + 1),

j = 0, 1, . . . ,N2. (12)

(3) Determine the probability of virtual machine mC1
0

to be up, and figure out the probability that b2 has j group
2&3 parts.

pC1
0 (n + 1) = p0(1 − x1(n))(q1P10(n + 1)

× (1 − P1w(n))(1 − P1WT(n + 1))

+
3∑

u=2
quPu0(n)(1 − Puw(n))(1 − PuWT(n))

+ qu(1 − Pu0(n)), 1 ≤ WT ≤ N2,

PC1
0,t1=i(n + 1) = Q(pC1

2 , pC1
0 (n + 1),N2 − i),

i = 0, 1, . . . ,N2,

PC1
j,t1=i(n + 1) = PC1

0,t1=i(n + 1)

1 − pC1
0 (n + 1)

[α(pC1
2 , pC1

0 (n + 1))]j,

i = 0, 1, . . . ,N2 − 1, j = 1, . . . ,N2 − i,

PC1
j (n + 1) =

N2−j∑
i=0

P1i (n + 1) · PC1
j,t1=i(n + 1),

j = 0, 1, . . . ,N2. (13)

(4) Ascertain the probability that the waiting condi-
tions are satisfied, that is, the desirable matching group
1 part is not available, the buffer b2 is not empty, and its
current occupancy is less than the waiting threshold.

P1w(n + 1) = p0(1 − x1(n))q1P10(n + 1)

·
WT−1∑
i=1

PC1
i (n + 1), 1 ≤ WT ≤ N2. (14)

• Step 3: Calculation of the occupancy status probabil-
ity of group 2 and group 1&3 parts in buffer b2 using
the similar calculation philosophy as in Step 2 (See
Section A.2 of Appendix 1 in details).

• Step 4: Calculation of the occupancy status probabil-
ity of group 3 and group 1&2 parts in buffer b2 using
the similar calculation philosophy as in Step 2 (See
Section A.2 of Appendix 1 in details).

• Step 5: Calculation of the probability that the buffers
b1 and b2 are empty, respectively.

pm0 (n + 1) = p0(1 − x2(n))

(
1 −

3∑
u=1

Puw(n + 1)

)
,

x1(n + 1) = Q(p1, pm0 (n + 1),N1),

ps0(n + 1) = p0(1 − x1(n))

(
1 −

3∑
u=1

Puw(n + 1)

)
,

x2(n + 1) = Q(p2, ps0(n + 1),N2). (15)

• Step 6: Check of stopping condition. If

|Puj (n + 1) − Puj (n)| < ε,

∀u = 1, 2, 3, j = 0, 1, . . . ,N2,

where ε is typically set to be 10−5, then stop. Otherwise,
return to Step 2.

After generating the solution algorithms for Policy
III, we can derive the system performance measures.
The assembly machine will be starved in the selective
assembly system with potential waiting since the buffer
is empty, and the main parts are waiting. Nevertheless,
as a result of waiting, the main parts will be assembled
with matching parts with a higher probability to produce
more matched products. Consequently, we derive the
estimated production rate of the three types of products
PRi(i = 0, 1, 2) as follows:

PR0 = p0(1 − x1)

(
1 −

3∑
u=1

Puw(n + 1)

)

×
( 3∑
u=1

qu(1 − Pu0 · (1 − PuWT))

)
,

PR1 = p0(1 − x1)

(
1 −

3∑
u=1

Puw(n + 1)

)

×
(∑
u=1,3

quPu0(1 − PuWT)(1 − P20)

+ q2P20(1 − P2WT)(1 − P10 · P30)
)
,

PR2 = p0(1 − x1)

(
1 −

3∑
u=1

Puw(n + 1)

)

×
(∑
u=1,3

quPu0(1 − PuWT)P20(1 − P4−u
0 )

)
,

1 ≤ WT ≤ N2.

Note that details about approximation methods and
performance measures for three-machine multi-group
with large buffers systems under Policy II and II can be
found in Section A.3 of Appendix 1. Then we can derive
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the calculation formula of the system evaluation index as:

TR =
2∑

i=0
Yi · PRi.

4.3. Approximationmethod formulti-machine
multi-groupwith large buffers systems

For multi-machine (M ≥ 3) multi-group (G ≥ 3) with
large buffers systems, another approximate method is
proposed by adding aggregation idea into the former
approximatemethod for performance evaluation. Specif-
ically, the aggregation procedure introduced in Chapter
16 of Li andMeerkov (2009) can be used to simplify mul-
tiple machines line into three machines and two buffers.
It has been indicated that such methods are efficacious,
and an accurate estimate of system production rates can
be obtained.

We consider a multi-machine selective assembly sys-
tem. Its main assembly line and sub-assembly line con-
tain M1 and M2 machines, respectively, followed by M0
processing machines, as shown in Figure 5. The main
idea of the aggregation procedure is that the forward and
backward aggregations for machine parameters are alter-
nately performed in the ‘upper’ lines and the ‘lower’ lines.
Such aggregations will be terminated when the stop con-
dition is met. Then we can obtain the parameters p̂i,Mi of
the machine m̂i,Mi after the aggregation procedure. Note
that superscripts ‘uf’ and ‘ub’ stand for the forward and
backward aggregations in the ‘upper’ lines, and super-
scripts ‘lf’ and ‘lb’ stand for those in the ‘lower’ lines. The

calculation formula of p̂i,Mi is as follows:

x̂1,M1−1 = Q(pufM1−1, p
ub
M1

,Nu
M1−1),

x̂2,M2−1 = Q(plfM2−1, p
lb
M2

,Nl
M2−1), (16)

p̂i,Mi = pi,Mi(1 − x̂i,Mi−1), (17)

In the above formula, x̂i,Mi−1 is the probability that buffer
bi,Mi−1 is empty.

We can obtain the parameter p̂0,1 ofmachine m̂0,1 after
aggregation through the following calculation process:

P̂0 = Q(pufM1+1, p
ub
M1+2,N

u
M1+1),

P̂N0,1 = P̂0
1 − pubM1+2

[α(pufM1+1, p
ub
M1+2)]

j, (18)

p̂0,1 = p0,1(1 − P̂N0,1) (19)

And p0,1 ismachinem0,1 reliability. P̂N0,1 is the probability
that buffer B01 is not full andm02 does not take a part.

So far, we have simplified the multi-machine selective
assembly system to a three-machinemodel in Section 4.2,
as seen in Figure 6 below. p0, p1, p2 are replaced by p̂0,1,
p̂1,M1 , p̂2,M2 respectively. Next, we use the approxima-
tion method for three-machine multi-group with large
buffers systems to calculate the marginal probabilities
of buffer occupancy status for group i parts. In turn,
we can obtain the system evaluation for multi-machine
multi-group with large buffers systems.

Figure 5. Multi-machine selective assembly system.

Figure 6. Simplified model of multi-machine selective assembly system.
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5. Numerical studies

5.1. Convergence and accuracy discussion

In this section, first, we verify the rationality of conver-
gence through numerous numerical studies. We take the
three-machine three-group (M1 = M2 = M0 = 1,G =
3) selective assembly system as an example to demon-
strate the convergence of approximation method for
three-machine multi-group with large buffers systems.
The system parameters of each scenario are generated
uniformly from the following sets:pi ∈ [0.5, 0.99], i =
1, 2; p0 ∈ [0.8, 0.99]; q1, g1 ∈ [0.5, 0.7]; q2, g2 ∈ [0.15,
0.25]; Ni ∈ [3, 20], i = 1, 2. Then q3 and g3 can be cal-
culated by formulas q3 = 1 − q1 − q2 and g3 = 1 − g1 −
g2, respectively. We solve those cases by proposed meth-
ods, and every casewe study converges immediately. Typ-
ically, Procedure 4.2 can terminate the iteration within 10
steps. Most cases can be solved in seconds. The conver-
gence of the marginal probability of buffer occupancy for
each group part is observed from Figures 7 and 8, which
shows that convergence to the limits is quite fast. For
multi-machine multi-group cases, we carry out similar
numerical experiments to prove the convergence. Again,
the procedure converges quickly in all the experiments.

For the purpose of verifying the accuracy of the
two approximation methods we proposed, we carry out

numerical experiments to compare the results of PR from
approximation methods with the simulation results by
using the Arena software. The warmup period of each
simulation experiment is set to be 10,000 time units,
and the replication length is 80,000 time units. For each
line under consideration, we carry out 20 replications.
And then statistically evaluate PR. We explore the accu-
racy of the two approximation methods proposed in
Sections 4.2 and 4.3, respectively. Among them, to inves-
tigate the effect of buffer size on the accuracy of the
methods, two experimental levels of buffer size, small
and large, which are randomly generated from the uni-
form distribution [3,15] and [16,30], are designed. Also
considering the groups, we design multiple experiments
for the two methods with the following four combi-
nations: three-group small buffers, multi-group (G =
4, 5, 6) small buffers, three-group large buffers, andmulti-
group (G = 4, 5, 6) large buffers to test the effect of buffer
size and groups on the accuracy of the methods. A vari-
ety of input line instances are uniformly generated from
the parameter ranges as listed in Appendix 2 Table A1.
We assume that in the main line, all machines have
identical reliability and all buffers are of equal size. So
are in mating and final assembly lines. The parame-
ters of machines and the capacities of buffers in main,
mating, and final assembly lines are denoted as pji and

Figure 7. Illustration of convergence of Procedure 4.2:p1 = 0.90p2 = 0.94p0 = 0.98, q1 = 0.62q2 = 0.20, g1 = 0.54g2 = 0.15, N1 =
8N2 = 10,WT = 6.
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Figure 8. Illustration of convergence of Procedure 4.2:p1 = 0.72p2 = 0.66p0 = 0.96, q1 = 0.51q2 = 0.29, g1 = 0.69g2 = 0.23, N1 =
14N2 = 16,WT = 14.

Nji, j = 1, 2, 0, respectively (and in all subsequent stud-
ies). For a set of given parameters, G, p1i, p2i, p0i, qi, gi
and WT, two groups of experiments under small and
large buffers are designed, respectively. The subcompo-
nent groups are set to be 3, 4, 5, or 6. The waiting
threshold is set to be 1, N2/2, or N2. The relative error
of the system performance measurement obtained by the
simulation and the approximate algorithm is defined as
follows:

Error = PRa − PRs

PRs
· 100%,

where superscripts ′a′ and ′s′ denote approximation
method and simulation experiment, respectively.

Table A2 is the result of the accuracy of the approxi-
mation method designed for three-machine multi-group
with large buffers systems. As seen from Table A2, the
largest and the smallest relative error are 12.52% and
0.004%, respectively, and the average relative error of PR
is 2.56%, which is fairly well. For multi-machine multi-
group with large buffers systems, other numerical exper-
iments are dealt with, and Table A3-A7 in Appendix 2
illustrates the examples of such experiments. The cases
in Table A3-A7 has 2, 3, 4 or 5 machines in the main
line, while 2, 3, 4, 6 or 8 machines are in the mating line,
and 2, 4, or 5machine follows the assemblymachine. The
average relative error of PR is 4.59%.

Besides, Tables A2–A7 in Appendix 2 show the exam-
ples of accuracy performance results of four combi-
nations of cases. Considering the experiments of both
approximation methods in a unified manner, we have
32 experiments for each combination, three-group small
buffers, multi-group small buffers, three-group large
buffers, and multi-group large buffers. We calculate the
average relative errors of the four combinations in Tables
A2-A7. The results show that multi-group small buffers
cases have the largest mean error of 5.41%, followed
by three-group small buffers: 5.27% and multi-group
large buffers: 2.41%. The three-group large buffers cases
have the smallest mean error of 2.23%. The accuracy of
the approximation methods decreases as the number of
groups increases and the buffer size decreases.

Despite this accuracy limitation, the approximation
methods provide a sufficiently efficient analytical tool for
performance evaluation of the selective system employ-
ing different scheduling policies, especially considering
that the parameters of the machines are collected on the
factory floor with an error of 5–10%.

5.2. Policies analysis

SinceTR is determined bymany system variables, it is not
realistic to locate a particular range that is in line with a
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performancemanner. In this section, we first fix the wait-
ing threshold to get some ideas about how the discount
factor a will affect the three policies’ performance. Then,
we investigate the influence of machine efficiency on the
performance of the three policies. Moreover, for Pol-
icy III, its performance under various patterns of buffer
size and machine reliability is evaluated. And the opti-
mal waiting threshold is searched to maximise system
revenue. We exhibit representative scenarios and expati-
ate upon somenecessary observations in each subsection.
It is worth noting that the parameters of the numerical
experiments are designed to be very similar so that the
impacts of changing different parameters on the system
performance can be compared with each other. These
experiments will provide useful insights to help effec-
tively apply the scheduling policy in selective assembly
systems. And the patterns of buffer size and machine
reliability numerical experiments also motivate the per-
formance improvement of similar practical systems by
implementing the new type of policy.

5.2.1. How does the discount factor affect the
performance of the three policies?
This subsection aims to find out how the performance of
the three policies depends on the discount factor and to
get some idea about what other key system and strategy
parameters will have a major impact on strategy perfor-
mance.We consider eight examples with different system

parameter configurations, as shown in Table A8. And to
point out the advantages of our proposed policy over
previous research, we compare the system performances
using three policies for each example.

Table A9 summarises the three policies’ results in
terms of total revenue as discount factor a changes from
0 to 1. We can observe that nearly in all the cases, both
Policy III and II perform better than Policy I. Figure 9
further visualises the results of Cases 1–4. For Cases 1–3,
Policy III always performs better than Policy II for any
a except one. Additionally, the revenue improvement by
Policy III decreases with the increment of the discount
factor. This is attributable to the fact that Policy III will
increase the PR of matched assemblies and reduce mis-
matched assemblies. The smaller the discount factor, the
larger the gap between the perfectly matched assemblies’
value and the mismatched ones’. When the growth of the
matched assemblies’ value is greater than the decrease in
mismatched ones’, the result shows an increase in total
revenue. For Case 4, it can be clearly noticed that there is
a unique intersection of Policy II and III curves. Policy III
is better than Policy II until a increases to a certain value.
After that, the performance of Policy III is worse than
Policy II. This is because that when a is large enough, the
value of the matched assemblies is only slightly enhanced
and cannot compensate for the reduced value of the mis-
matched ones. The overall effect is a decline in total
revenue.

Figure 9. The comparison results for Cases 1–4.
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Figure 10. The comparison results for Cases 5–8.

The difference between Case 5 and 4 is that there is
another intersection of Policy I and III. When a is larger
than the intersection, Policy III will be the most disap-
pointing one. For Cases 6–8, Policy II has completely
surpassed Policy III, as shown in Figure 10. It is owing to
the long waiting time for the matching part’s arrival. The
production system has been down for too long, which
has caused a loss to the system efficiency. As a result, the
product throughput has declined, but the product quality
has not been obviously improved.

From the above numerical results, we can obtain the
following conclusions.

• Nearly in all systems, as the discount factor varies,
bothWCQMP and CQMP perform better than RMP.
Andwhen pivotal systemparameters, such asmachine
reliability, buffer size, are properly designed,WCQMP
can stand out by comparison with CQMP.

• When WCQMP performs better (worse) than CQMP
or RMP, a smaller (larger) discount factor will lead to
a larger performance gap between WCQMP and the
other two policies.

5.2.2. How doesmachine reliability affect the
performance of the three policies?
In this subsection, we investigate the impact of machine
reliability on the systemperformancemeasures. It aims to
point out which scheduling policy is more conducive to

system revenue improvementwith differentmachine reli-
ability configurations. We consider an assembly system
consisting of three machines with each sub-component
divided into three groups and buffer capacityN1 = N2 =
2. The discount factor is assigned as 0.3 (and in all
subsequent studies). We assume that qi = gi, i = 1, 2, 3.
Specifically, q1 = g1 = 0.60, q2 = g2 = 0.24, q3 = g3 =
0.16. The machine parameters of each machine are
equal. We have p0 = p1 = p2 = 0.85. If there are more
than three machines in the assembly line, we make the
aggregated machines parameters p̂0,1 = p̂1,M1 = p̂2,M2 =
0.85.

First, we study how p0 affects the three policies’ perfor-
mance and conduct a comparative analysis of them. Let
p0 vary from0.49 to 0.99while p1 = p2 = 0.85 and all the
other systemparameters remain unchanged. Figure 11(a)
demonstrates how the system quality-related revenue
contributed by three policies depends on p0. Whatever
the value of p0 takes, the curves of Policy II and III always
lie above Policy I, and the gap between them is evident.
Moreover, as p0 grows, the curve representing Policy III
almost grows linearly, while the curve of Policy II first
gradually rises and then tardily goes down. Therefore,
the enhancement of p0 will make Policy III perform bet-
ter. In this situation, it is intuitively straightforward since
the upstream machines reliability will be the main con-
straint for the production rate improvement when p0 is
large. Hence, allowingmachinem0 to wait for a while will
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Figure 11. Impact of machine reliability (a) p0, (b)p1, (c) p2 on the performance of three policies.

have a minor impact on the throughput loss, which does
not exceed the effect on quality improvement caused by
the waiting. Consequently, if there is a chance to improve
the assembly quality by delaying the assembly process
for a proper period, Policy III should be considered
first.

Then, to investigate the impact of p1, we consider
the assembly lines with parameter p0 = p1 = 0.85 when
p1 changes. Likewise, the remaining system parame-
ters of examined assembly lines keep the same. From
Figure 11(b), we can observe that the order of the per-
formance of the three policies is always: Policy III >

Policy II > Policy I. Furthermore, the performance of
the former two and the latter is obviously different on
every occasion. Policy III will performbetter with a larger
p1. In this context, machine m2 will become the bot-
tleneck of the system production rate. Starved by the
empty buffer b2, the production efficiency of the assem-
bly machine is not high. And the probability of gener-
ating mismatches will increase. Although waiting for a
desirable mating part will cause a further decline in its
assembly efficiency, at the same time, the assembly qual-
ity has been greatly improved. Implementing Policy III
of postponing the assembly process has a more evident
impact on the quality improvement than the throughput
impediment.

Finally, we study the impact of machine m2 relia-
bility in the assembly lines where p0 = p1 = 0.85 and
p2 changes. The rest of the system parameters keep the

same. Figure 11(c) illustrates that with respect to p2, Pol-
icy III performs best for most cases. Moreover, opposite
to p0 and p1, a larger p2 will inhibit the performance
improvement effect brought by Policy III, resulting in a
smaller performance gap between it and the other two
policies. In this way, the bottleneck will be machine m1.
The probability that there is no matching part avail-
able in buffer b2 is very low. It is not beneficial to only
pursue the current individual assembly quality improve-
ment, but ignore the fact that if the assembly process
continues, more matched assemblies will be made with-
out waiting. Relatively speaking, instead of sacrificing
working time for local quality improvement, it is better
to continue processing to obtain a higher level of overall
throughput.

From the above observations, we can draw the conclu-
sions as follows. Under keeping the other system configu-
rations fixed, for systemswith highermain line reliability,
higher final assembly line reliability, or a lower level of
mating line reliability, the benefits brought by WCQMP
will be more in contrast to RMP and CQMP.

5.2.3. How do the patterns of buffer size andmachine
reliability affect the performance of the Policy III?
In this subsection, we investigate the impact of buffer
size and machine reliability patterns on the perfor-
mance of Policy III. First, lines with identical buffers and
machine reliability are investigated. Next, we consider
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Table 2. Three-machine (M1 = 1,M2 = 1,M0 = 1) lines with
identical Nj , j = 1, 2, and p1 = p2 = p0 = 0.85.

N1 N2 PR0 PR1 PR2 TR

4 4 0.589 0.15 0.022 0.669
5 5 0.627 0.146 0.021 0.705
6 6 0.65 0.139 0.019 0.724
7 7 0.666 0.132 0.018 0.737
8 8 0.68 0.125 0.017 0.747
9 9 0.692 0.119 0.015 0.755
10 10 0.7 0.114 0.015 0.761
11 11 0.709 0.109 0.013 0.767
12 12 0.716 0.105 0.012 0.771
13 13 0.722 0.101 0.012 0.775
14 14 0.728 0.097 0.011 0.779
15 15 0.733 0.093 0.011 0.782

Table 3. Multi-machine (M1 = 2,M2 = 2,M0 = 2) lines with
identical Nji , j = 0, 1, 2, and p1i = p2i = p0i = 0.85.

N1i N2i N0i PR0 PR1 PR2 TR

16 16 16 0.737 0.091 0.01 0.785
17 17 17 0.741 0.088 0.01 0.787
18 18 18 0.746 0.084 0.009 0.791
19 19 19 0.75 0.081 0.009 0.793
20 20 20 0.751 0.081 0.009 0.794

Table 4. Multi-machine (M1 = 5,M2 = 6,M0 = 4) lines with
identical Nji , j = 0, 1, 2, and p1i = p2i = p0i = 0.85.

N1i N2i N0i PR0 PR1 PR2 TR

21 21 21 0.755 0.078 0.008 0.796
22 22 22 0.758 0.075 0.008 0.798
23 23 23 0.761 0.074 0.007 0.8
24 24 24 0.763 0.072 0.007 0.801
25 25 25 0.765 0.071 0.007 0.802

lines with nonidentical buffers and equal machine relia-
bility to study the impact of buffer capacity. Finally, lines
with identical buffers but nonidentical machine reliabil-
ity are considered to investigate the impact of machine
reliability.

5.2.3.1. Lines with identical buffers and machine relia-
bility. First, we consider three-machine lines with Nj ∈
[4, 15], p1 = p2 = p0 = 0.85. We assume that subcom-
ponents have three groups and q1 = g1 = 0.60, q2 =
g2 = 0.24, q3 = g3 = 0.16, a = 0.5, WT = 4 (and in
all subsequent studies). As shown in Table 2, a larger
buffer size always leads to a higher production rate
for exactly matched assemblies and lower that of mis-
matched ones. And total revenue grows as buffer size
becomes larger. The reason is that larger buffers con-
tribute to a higher production rate, so that more high-
quality assemblies will be produced and the total rev-
enue will be higher. For multi-machine lines with iden-
tical buffers (capacities 16–25) and identical machine
reliability, similar properties can be observed (see
Tables 3 and 4).

Table 5. Three-machine (M1 = 1,M2 = 1,M0 = 1) lines with
nonidentical Nj , j = 1, 2, and p1 = p2 = p0 = 0.85.

N1 N2 PR0 PR1 PR2 TR

4 6 0.646 0.137 0.019 0.719
6 4 0.592 0.15 0.022 0.673
6 8 0.68 0.123 0.016 0.745
8 6 0.651 0.14 0.02 0.726
8 10 0.701 0.112 0.014 0.76
10 8 0.681 0.126 0.017 0.748
10 12 0.716 0.103 0.012 0.771
12 10 0.701 0.115 0.014 0.762

Table 6. Multi-machine (M1 = 3,M2 = 3,M0 = 2) lines with
nonidentical Nji , j = 0, 1, 2, and p1i = p2i = p0i = 0.85.

N1i N2i N0i PR0 PR1 PR2 TR

12 10 10 0.701 0.115 0.014 0.762
10 12 10 0.716 0.103 0.012 0.771
10 10 12 0.701 0.114 0.014 0.761
12 12 14 0.717 0.104 0.012 0.772
14 12 12 0.716 0.105 0.012 0.772
12 14 12 0.728 0.095 0.011 0.779
14 14 16 0.728 0.097 0.011 0.779
14 16 14 0.739 0.089 0.01 0.785
16 14 14 0.728 0.097 0.011 0.779

Table 7. Multi-machine (M1 = 4,M2 = 8,M0 = 5) lines with
nonidentical Nji , j = 0, 1, 2, and p1i = p2i = p0i = 0.85.

N1i N2i N0i PR0 PR1 PR2 TR

6 4 4 0.594 0.152 0.022 0.676
4 6 4 0.647 0.138 0.019 0.721
4 4 6 0.593 0.152 0.023 0.675
6 6 8 0.651 0.14 0.02 0.726
8 6 6 0.651 0.141 0.02 0.727
6 8 6 0.68 0.124 0.016 0.746
8 8 10 0.68 0.126 0.017 0.747
8 10 8 0.702 0.112 0.014 0.761
10 8 8 0.681 0.127 0.017 0.749

5.2.3.2. Lines with nonidentical buffers and equal
machine reliability. Next, we consider three- and multi-
machine lines to study the impact of buffer capacity pat-
terns. We can observe from Table 5 that comparing to
cases of N1 > N2, cases of N2 > N1 indicate increases in
PR0, and decreases in PR1 and PR2. Total revenue shows
an upward trend. As we can see from Table 6, the buffer
pattern where N1i and N0i are always equal and smaller
than N2i implies decreases in PR1 and PR2. Similarly,
the buffer pattern N1i = N0i < N2i also leads to larger
PR0 and TR. The results of the other two patterns (N1i >

N0i = N2i and N1i = N2i < N0i) only have slight differ-
ences. Analogous findings are observed inmulti-machine
(M1 = 4,M2 = 8,M0 = 5) lines (Table 7).

5.2.3.3. Lines with identical buffers and nonidentical
machine reliability. Finally, we investigate the impact of
machine reliability patterns by considering three- and
multi-machine lines. In Table 8, four patterns of machine
reliability are studied: p1i < p2i < p0i, p1i > p2i > p0i,
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Table 8. Three-machine (M1 = 1,M2 = 1,M0 = 1) lines with
identical Nj = 10, j = 1, 2, and different pji , j = 0, 1, 2.

p1i p2i p0i PR0 PR1 PR2 TR

0.65 0.8 0.95 0.572 0.071 0.007 0.609
0.95 0.8 0.65 0.573 0.07 0.007 0.61
0.7 0.8 0.9 0.612 0.079 0.009 0.653
0.9 0.8 0.7 0.611 0.079 0.009 0.653
0.85 0.65 0.85 0.509 0.123 0.018 0.575
0.65 0.85 0.65 0.558 0.065 0.006 0.592
0.7 0.6 0.7 0.479 0.103 0.015 0.534
0.6 0.7 0.6 0.505 0.065 0.007 0.539

Table 9. Multi-machine (M1 = 4,M2 = 4,M0 = 2) lines with
identical Nji = 10, j = 0, 1, 2, and different pji , j = 0, 1, 2.

p1i p2i p0i PR0 PR1 PR2 TR

0.55 0.75 0.95 0.487 0.057 0.006 0.517
0.95 0.75 0.55 0.486 0.058 0.006 0.516
0.65 0.75 0.85 0.566 0.075 0.009 0.605
0.85 0.75 0.65 0.565 0.075 0.009 0.604
0.9 0.7 0.9 0.544 0.135 0.02 0.617
0.7 0.9 0.7 0.605 0.07 0.006 0.641
0.95 0.85 0.95 0.666 0.161 0.024 0.752
0.85 0.95 0.85 0.745 0.085 0.007 0.79

Table 10. Multi-machine (M1 = 5,M2 = 6,M0 = 4) lines with
identical Nji = 10, j = 0, 1, 2, and different pji , j = 0, 1, 2.

p1i p2i p0i PR0 PR1 PR2 TR

0.6 0.75 0.9 0.529 0.066 0.007 0.563
0.9 0.75 0.6 0.527 0.065 0.007 0.561
0.75 0.85 0.95 0.659 0.083 0.008 0.703
0.95 0.85 0.75 0.657 0.083 0.009 0.701
0.95 0.75 0.95 0.582 0.146 0.022 0.66
0.75 0.95 0.75 0.652 0.075 0.006 0.691
0.9 0.8 0.9 0.632 0.146 0.021 0.71
0.8 0.9 0.8 0.694 0.083 0.008 0.738

p1i = p0i > p2i and p1i = p0i < p2i. Comparing with the
pattern p1i = p0i > p2i, the pattern where p1i and p0i are
always equal and smaller than p2i can lead to an increas-
ing distribution of production rate of matched assem-
blies and total revenue. There is an unobvious contrast
between the production rate of each type of product and
the total revenue of the two kinds of machine reliability
distributions p1i < p2i < p0i and p1i > p2i > p0i. When
multi-machine lines are considered, as demonstrated in
Tables 9 and 10, similar properties still hold.

Based on the extensive numerical experiments, we can
draw the following conclusions.

• For selective assembly systems with identical buffers
and machine reliability, larger buffers lead to a higher
production rate of exactly matched assemblies and
lower that of mismatched ones, resulting in higher
total revenue underWCQMP.

• For selective assembly systems with nonidentical
buffers and equal machine reliability, WCQMP pro-
vides more revenue to the system following the buffer

pattern where the main line and final assembly line
buffers capacities are always equal and smaller than
those of mating line buffers.

• For selective assembly systems with identical buffers
and nonidentical machine reliability, when adopt-
ing WCQMP, the machine reliability pattern where
the main line and final assembly line machines reli-
ability are always equal and smaller than that of
mating line machines can bring about larger total
revenue.

5.2.4. Optimisation waiting threshold decision for a
fixed system
In this subsection, first, we focus on the change of
waiting threshold constraint and its impacts on the
selective assembly system performance. For this, three
multi-machine three-group assembly lines with typical
machine reliability settings are under consideration. The
parameter configurations are summarised in Table 11.
N1i, N2i, N0i, qi, gi and a are assumed to be fixed val-
ues, respectively, except for a certain waiting threshold
that is used to examine its impacts. We study how total
revenue behaves as the waiting threshold WT increases
from 1 to 20. The results of the three assembly lines
are examined in Figure 12, respectively. In these figures,
the total revenue is illustrated as function of the waiting
threshold.

For L1, it can be clearly observed that the assembly sys-
tem’s total revenue has the increasing monotonicity on
WT. Therefore, the relaxation ofWT is always beneficial
to performance improvement. This result is attributed
to the fact that longer downtime has a greater impact
on assembly quality than on throughput. Therefore, the
optimal WT∗ is the buffer capacity 20. For L2, the total
revenue shows a tendency first to increase and then
slowly fall with the change of WT. Among them, there
is a sharp increase at WT = 2. Then the maximum TR
appears atWT = 4. After that, the total revenue achieved
by increasingWT has not significantly changed, but only
a slight decrease. This is because the long waiting down-
time has a major impact on the reduction in through-
put, while the assembly quality has not been improved
markedly. In consequence, a slight drop in the system
total revenue occurs. In such a line, we can achieve max-
imum revenue when WT∗ = 4. For L3, no matter how
large the WT is, the increase in total revenue brought
about by the improvement of product quality is negli-
gible for this system with high machine reliability. On
the contrary, a little waste of working time will cause an
apparent loss of throughput. Therefore, the total revenue
has shown a continuous downward trend. In this context,
WT∗ = 1, that is, not waiting is the optimal decision for
the selective assembly system.
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From the above examples, it can be seen that the opti-
malwaiting thresholds for different systemswhen obtain-
ing the maximal total revenue are distinct. To figure
out how to determine an optimal or the best possible
waiting threshold for a fixed system, we further inves-
tigate the monotonicity properties of the system with
the waiting threshold constraint by examining a small
assembly system. We consider a three-machine three-
group selective assembly line with p = [0.85, 0.8, 0.95],
N = [10, 25], qi = gi = [0.6, 0.3, 0.1] and a = 0.3. Six
experiments are implemented in this example to study
the impact of machine efficiency, the buffer size, and the
discount factor on the change of optimal waiting thresh-
old. Specifically, in Experiments 1, 2, and 3, the reliability
of machinesm1,m2, andm0, respectively, is ranged from
0.69 to 0.99 and the other parameters are kept fixed. In
Experiments 4 and 5, the buffer capacity is varied from 5
to 35 and the other parameters are kept fixed. In Exper-
iments 6, the range of discount factor a is from 0.2 to
0.8. The configurations of these experiments are listed in
Table 12.

As seen in Figure 13, for various selective assem-
bly lines generated by setting different machine relia-
bility parameters p1, p2 or p0, when WT is increased,
the monotonicity of total revenue may not hold all the
time. Accordingly, the optimal waiting threshold will
alter. Specifically, we can observe from Figure 13 that
when other system parameters are fixed, the optimal
WT∗ tends to become smaller in general as p1 increases.
As p1 increases, moremain parts need to bematched, but
relatively speaking, the machinem2 is less efficient at this
time, which is the bottleneck of the system. The proba-
bility of the desirable mating part’s arrival is still very low
though after a period of waiting. And when the cumu-
lative waiting time is too long, postponing the assembly
process has a greater impact on the throughput impedi-
ment than the assembly quality improvement. Therefore,
WT∗ tends to become smaller.

And a larger p2 or p0 leads to an increasing trend for
the optimal WT∗, overall. As p2 increases, the efficiency
of machine m1 is relatively lower at this time, which is
the bottleneck of the system. And there are not so many

Table 11. Detailed parameters for three typical lines.

Lines M1 M2 M0 G N1i , N2i , N0i p1i , p2i , p0i qi gi a

L1 3 3 2 3 20,20,20 0.75,0.75,0.85 0.50,0.30,0.20 0.50,0.30,0.20 0.5
L2 3 3 2 3 20,20,20 0.95,0.75,0.85 0.50,0.30,0.20 0.50,0.30,0.20 0.5
L3 3 3 2 3 20,20,20 0.95,0.95,0.85 0.50,0.30,0.20 0.50,0.30,0.20 0.5

Figure 12. Performance results with respect to the waiting threshold.

Table 12. Parameters configurations of experiments.

No. of Experiments p1 p2 p0 N1 N2 a qi gi

1 [0.69,0.99] 0.8 0.95 10 25 0.3 0.6,0.3,0.1 0.6,0.3,0.1
2 0.85 [0.69,0.99] 0.95 10 25 0.3 0.6,0.3,0.1 0.6,0.3,0.1
3 0.85 0.8 [0.69,0.99] 10 25 0.3 0.6,0.3,0.1 0.6,0.3,0.1
4 0.85 0.8 0.95 [5,35] 25 0.3 0.6,0.3,0.1 0.6,0.3,0.1
5 0.85 0.8 0.95 10 [5,35] 0.3 0.6,0.3,0.1 0.6,0.3,0.1
6 0.85 0.8 0.95 10 25 [0.2,0.8] 0.6,0.3,0.1 0.6,0.3,0.1
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Figure 13. Impact of the machine reliability on the changes of the optimal waiting threshold.

Figure 14. Impact of the buffer size and discount factor on the changes of the optimal waiting threshold.

main parts to match. Compared with the system without
waiting, making the assembly machine out of work for
a while will not cause too much loss in throughput. As
long as a small increase in the probability of the desirable
mating part’s arrival, it will make an obvious assembly
quality improvement. Therefore, there is a growing trend
of WT∗. When p0 is small, the assembly machine m0 is
the bottleneck of the system at this time. Waiting for a
better matching will inevitably lead to a further decline
in system throughput, and the main effect caused by

shutdowns is to impede the throughput. Therefore, as p0
decreases, there is a decreasing trend ofWT∗. Conversely,
as p0 increases,WT∗ tends to become larger.

Next, we study the monotonicity pattern exhibiting by
lines differing in buffer capacity or discount factor. Sim-
ilarly, the total revenue is not monotonic concerning the
waiting threshold. As shown in Figure 14, buffer size has
a minor effect on determining the value of the optimal
threshold, and a larger discount factor leads to a smaller
optimal threshold.
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We can obtain the following conclusions from the
results. For various selective assembly lines with differ-
ent system parameters, the monotonicity of total revenue
with respect to the waiting threshold may not always
exist. The optimal waiting threshold exists when the
assembly system makes the trade-off between assembly
quality improvement and an impediment to the through-
put. In general, compared to buffer size and discount fac-
tor, machine efficiency has a greater decisive effect on the
value of the optimal waiting threshold. Furthermore, as
main line reliability increases, the optimalwaiting thresh-
old tends to become smaller on the whole. Highermating
line reliability or final assembly line reliability leads to
an increasing trend for the optimal waiting threshold.
We can draw insights about the decision of optimal wait-
ing threshold from these conclusions.When applying the
proposed WCQMP, a manager in the industry should
adjust the policy parameter to achieve a better system
performance when machine efficiency has changed in a
real system. Specifically, when the main line efficiency
is improved, the waiting threshold should be adjusted
to be smaller to obtain maximal revenue. Besides, if
the mating line or final assembly line is aging during
the practical production operation, the waiting thresh-
old should be decreased. Those provide managers policy
adjustment guidelineswhen a systemhas great changes or
improvements.

6. Conclusions

The paper considers the quality-related total revenue
maximisation problem in the selective assembly system
by adopting different scheduling policies for matching
operations. TheWaiting for Closest Quality Matching Pol-
icy (WCQMP) is explicitly proposed to increase the prob-
ability of producing high-quality assemblies. Meanwhile,
we propose the other two policies,RandomMatching Pol-
icy (RMP) and Closest Quality Matching Policy (CQMP)
as comparisons. System performance when employing
the three policies is evaluated by exact and approxi-
mation methods for small and larger systems, respec-
tively. The convergence and accuracy of the approximate
methods are verified numerically. We conclude that in
most cases, bothWCQMP and CQMP outperform RMP.
While for WCQMP, when system and policy parame-
ters are properly designed, the superiority ofWCQMP is
more prominent by improving assembly quality without
overly sacrificing system throughput, thereby increas-
ing quality-related revenue. A few beneficial insights are
also provided for industrial managers to improve system
revenue by using our proposed policy WCQMP more
appropriately in practice.

Lots of future work can be implemented furtherly.
Firstly, the distribution of machine reliability, such as
geometric, Weibull, and general distributions, can be
further studied in selective assembly systems. Secondly,
models to assembly systems that assemble products with
different assembly structures (i.e. one product consisting
of one X-shaped part and d Y-shaped parts) or multi-
ple quality attributes (i.e. geometric dimensions) can be
considered. Thirdly, researchers can extend the model to
lines with batch machines and study good policies for
batch-based matching in a selective assembly system.
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