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A B S T R A C T   

Virtual care serves as a new mode that can divert non-urgent visits from traditional office visits. Whether virtual 
service can improve the access to medical treatment and reduce the burden of traditional office services, the key 
issue is to generate efficient appointment schedules with the lowest operation cost. In this paper, considering the 
uncertainty of time-dependent no-shows and service times, we investigate a multiserver time window allowance 
appointment scheduling problem, where time window constraints that restricts virtual visits to be served during 
the particular period are explicitly modeled. We formulate the problem as a stochastic mixed-integer program to 
optimize decisions of physician allocation and appointment time simultaneously. Based on the sample average 
approximation, a stabilized Benders decomposition algorithm is developed by incorporating acceleration tech
niques, such as cut aggregation and feasibility cuts. Numerical results based on real data indicate the effec
tiveness of the proposed multiserver time window allowance schedules (MTWAS) and algorithm. Comparing 
with the off-the-shelf solver Gurobi, the developed algorithm demonstrates high performance in terms of 
computation speed and solution quality. Under different time-dependent no-show patterns of virtual and office 
visits, the obtained MTWAS perform better than previous solutions in almost all test cases. In addition, we offer 
useful managerial insights to aid the virtual service provider in making better scheduling decisions.   

1. Introduction 

As an emerging type of digitalization medical service, Internet hos
pitals provide patients with virtual appointments through messages, 
phone calls, or videos. Virtual visits and telemedicine have emerged as 
essential options with the advantages of rapid response and no trans
portation. However, various operation management ambiguities occur 
in the combination process of virtual and office services [1]. Appoint
ment systems assist in lowering the variability in patient arrival times, 
resulting in shorter wait times for patients and continued high system 
utilization. In order to make virtual services truly alleviate the burden 
on office service and improve medical accessibility, appointment 
scheduling systems are required further studies to control the patient 
demand for various services. 

In the one of Internet hospitals we surveyed, virtual services are 
available in almost all departments such as internal medicine, surgery, 
gynecology, and traditional Chinese medicine. The appointment time 
available for virtual service of each department is generally in certain 

mornings and afternoons of certain days. For example, appointments for 
gastroenterology can be made on Monday afternoon, Wednesday af
ternoon and Saturday afternoon. The current practice is generally to 
centralize treating virtual visits at certain periods during the day, with 
few departments having virtual care available throughout the day. Each 
department has multiple doctors to choose, and each appointment is 
fixed for half an hour. Serious issues with long patient waiting and low 
physician utilization are emphasized in our interaction with the hospi
tal. The hospital struggle with making efficient appointment scheduling 
decisions and seeking easy-to-implement guidelines regarding specified 
appointment periods for virtual visits with in-depth systems analysis. 
This motivated us to study the appointment scheduling problem for 
virtual care where a new type of schedule named multiserver time 
window allowance schedule is formally proposed and analyzed. 

One new challenge is the uncertainty inherently observed in prac
tical service systems. Virtual service greatly breaks through time and 
geographic space limitations, which may lead to changes in the patient 
behavior. We consider stochastic time-dependent no-shows and service 
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times. These uncertainties pose great difficulties in solving the problem. 
To tackle such difficulties, we deploy a Benders decomposition frame
work based on the sample average approximation (SAA) approach to 
formulate the problem as a stochastic mixed-integer program (SMIP). In 
addition, a scenario generation procedure is proposed to address the 
issue of a lack of no-show data in some appointment times. We develop a 
stabilized Benders decomposition algorithm with several accelerated 
measures to solve this problem. Numerical studies are implemented to 
illustrate the superior performance of proposed multiserver time win
dow allowance schedules compared with previous single-server sched
ules and traditional schedules without time windows. 

The main contributions of this study are threefold. First, we inves
tigate the appointment scheduling in the presence of virtual medical 
service. A new type of schedule named multiserver time window 
allowance schedule is formally proposed, optimized and analyzed to 
manage virtual visits with uncertain time-dependent no-shows and 
service times. To promote the healthcare digital transformation, this 
issue is meaningful and interesting and deserves to be investigated. 
Second, we propose a stabilized Benders decomposition algorithm based 
on several acceleration techniques. Numerical results demonstrate that 
our method outperforms the benchmark in computation time and so
lution quality. The proposed algorithm can achieve ε-optimal solutions 
by a surprisingly small number of iterations even if the optimality 
tolerance ε is very small. Finally, through numerical studies, we 
conclude that the proposed MTWAS solutions almost always illustrate 
superiority over the schedules obtained in previous studies. In addition, 
we offer interesting insights as guidelines provided to hospitals, which 
aids practitioners in conducting virtual medical care. First, instead of 
separately scheduling appointments for each physician using a single- 
server model, we suggest jointly scheduling multiple servers when 
physicians treat virtual and office visits significant differently. Second, 
under different show-up patterns, adopting reasonable MTWAS gener
ates superior performance than the traditional schedule without time 
windows. 

We organize the remainder of this article as follows. In Section 2, we 
review and summarize the relevant literature. Section 3 describes the 
problem and explicitly formulates it as a stochastic mixed-integer pro
gram. Then, in Section 4, we provide the details of our proposed stabi
lized Benders decomposition algorithm. In Section 5, numerical studies 
are conducted, and some potential insights are explored. Section 6 
summarizes the conclusions and presents directions for future work. 

2. Literature review 

In this section, to elaborate the contribution of our study, we review 
mainly healthcare operations management literature on various service 
requests and relevant works from the appointment scheduling literature 
that are either very close to this study or very recent. 

2.1. Operations management literature on various service requests 

Various service requests, such as prescheduled [15,16], walk-in 
[17–19,40,41], emergency [20,21], revisit [22,23], and ambulatory 
care services [52], are investigated and modeled in the healthcare op
erations management literature. Marynissen and Demeulemeester [48] 
focus on reviewing the literature on multi-stage appointment scheduling 
problems. Gupta and Denton [46] provide a thorough review on 
appointment scheduling systems applied in different settings, such as 
primary, specialty care clinics and elective surgeries. Operations man
agement about virtual visits has gained growing research interest in 
recent years. Zhong et al. [10] use queuing theory to study the condi
tions for system parameters to improve service outcomes when intro
ducing e-visits. Xiang et al. [11] investigate the performance of different 
scheduling policies for managing both office and virtual visits using a 
probabilistic analytical approach. The results reveal that the first-come- 
first-serve strategy achieves optimal system performance. Zhong [1] 

model the appointment capacity planning problem with office and vir
tual visits as a queueing model. They analyze the effect of different 
system parameters on the system queue length and conclude that not 
more virtual visits are better. In chronic care, Bayram et al. [12] 
formulate the problem of allocating capacity for office and virtual ap
pointments as a stochastic dynamic programming model to maximize 
the aggregate health benefits. To fulfil the diverse needs of virtual visits 
and improve the efficiency of online physicians’ resource allocation, 
Wen et al. [13] study the problem of recommending physicians for pa
tients on an online platform. They use a heuristic algorithm to obtain the 
optimal physician information display order that maximizes the phys
ician–patient matching degree. Pan et al. [14] study the matching 
problem for randomly arriving virtual visits with perishable resources. 
They propose an online heuristic algorithm for deciding whether to 
accept a patient and which physician to assign to the patient to maxi
mize the total expected reward. Shen et al. [69] develop a modified 
progressive hedging algorithm to solve the advance schduling problem 
considering online or offline revisit uncertainty and continuity of care. 
Based on the above-reviewed literature, the research gaps are found out. 
To the best of our knowledge, research on operation management of the 
virtual service is still quite limited and is confined to physician recom
mendation strategies, capacity planning, and advance scheduling of 
appointment days. The goal of this study is to investigate the appoint
ment scheduling problem to optimize the appointment time for virtual 
care. A new type of schedule named multiserver time window allowance 
schedule is formally developed that determines the schedule of virtual 
visits in a specified period, which has important practical implications 
for launching virtual care service. 

2.2. Uncertainties in appointment scheduling 

There is a vast body of literature on appointment scheduling 
addressing uncertainties in health care delivery systems. Studies [2,3] 
show that patients exhibit the significant phenomenon of no-shows and 
that failure to consider no-shows in appointment scheduling results in a 
waste of resources. Since no-shows can have harmful effects [26], 
methods such as overbooking [3,5,30,44,49,51], open access 
[15,31,39], and adjustable appointment intervals [4,29] have been 
developed to remediate the adverse impacts of no-shows in the litera
ture. Dantas et al. [47] present a systematic review of no-shows in 
appointment scheduling. The optimal decision [50] and policy [54] of 
appointment scheduling are investigated with considerations of patient 
no-shows. Stochastic service time and patient no-shows are mainly 
addressed. Concerning the uncertainty of service time [42], Chen and 
Robinson [15] and Zhou and Yue [28] generate many equally likely 
scenarios to capture the uncertainty of service time. A few studies 
address this uncertainty by optimizing the worst-case performance to 
achieve robust solutions. For example, Jiang et al. [29] and Kong et al. 
[4] develop distributionally robust optimization models by assuming 
that the probability distribution of the uncertain service time is 
ambiguous. The difference is that the distribution set considered by 
Jiang et al. [29] is only characterized by first moment information, 
while Kong et al. [4] assume both first and second moment information 
is known. Mandelbaum et al. [7] use a data-driven approach considering 
uncertain service time in a cancer infusion unit. Abovementioned 
studies [4,15,28,29] use the same approach to address stochastic no- 
shows. To characterize the no-show, the heterogeneous no-show is 
considered in some recent studies. For instance, the no-show is job- 
dependent in papers [3,28,32], meaning that different patients have 
different show-up rates. Kong et al. [4] and Zhou and Yue [28] show that 
customer no-show behavior depends on the time of day. Liu and Ziya [5] 
further find that patient heterogeneity and no-show rates are correlated. 
Different no-shows and service times for patients are considered in 
[24–27]. Similar to Kong et al. [4] and Zhou and Yue [28], this study 
addresses stochastic service time and time-dependent no-shows. In our 
analysis, we focus on investigating how the proposed MTWAS performs 
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and exploring potential insights for adopting MTWAS when virtual and 
office visits present different time-dependent show-up patterns. 

2.3. Patient scheduling on single or multiple servers 

Previous literature modelled single or multiple service providers for 
different appointment scheduling systems. Several papers formulate the 
single-server scheduling problem as stochastic programming model 
[4,15,29] or single-server queuing model [5,33]. Assigning appointment 
to multiserver has aroused interests in many application areas, such as 
surgery scheduling [6], cancer chemotherapy [7–9], specialty care [34], 
and outpatient clinic [35–38,45]. Abovementioned works model prob
lems with the framework of stochastic optimization and solve them with 
exact or heuristic iteration optimization algorithms. Some optimization 
goals, such as maximizing net reward or minimizing the expected sum of 
the patient waiting time and physician idle and overtime cost, are ach
ieved by optimizing the scheduled arrival time interval between adja
cent appointments. A few works employ queueing theory to analyze 
problems [32]. Pan et al. [36] propose a stochastic approximation al
gorithm under unbiased gradient estimators to solve the appointment 
scheduling problem considering multiple servers, no-shows and un
punctuality. Wu and Zhou [37] address the joint optimization of 
sequencing and scheduling appointments with random service durations 
and unpunctual times on multiple servers by developing a L-shaped 
based heuristic method. Shnits et al. [38] adopt a multi-server numeri
cal-based algorithm to schedule a given sequence of patients and indi
cate how server pooling improves the system performances. Yan et al. 
[53] develop a stochastic overbooking model for outpatient clinics 
considering multiple physicians and patient preference for physicians 
and their appointment times. Alvarez-Oh et al. [55] formulate a two- 
stage stochastic integer programming model to schedule patients who 
need to be seen by one of two available nurses first and then to be seen 
by her provider. In our analysis, we mainly concentrate on examining 
the value of multiserver modeling as well as how the multiserver model 

functions when doctors exhibit various working rhythms, such as mean 
and standard deviation of service times. 

2.4. Solution approaches for appointment scheduling 

For solving the stochastic optimization models in appointment 
scheduling literature, Sample Average Approximation (SAA) approach is 
popularly adopted as an efficient scenario-based method [30,34,36], 
which generates many random samples and computes the average 
objective function values for all scenarios to approximate the objective 
value of the stochastic program. Benders decomposition algorithm are 
often used along with SAA to solve large-scale stochastic mixed-integer 
programs. For the field of appointment scheduling, see, for example, 
Zhou et al. [34], Jiang et al. [56], Chen and Robinson [15], Xiao et al. 
[57], and Zhou and Yue [28]. In addition, exact algorithms such as 
branch-and-price-and-cut [59], and heuristics [58,60] are developed to 
solve optimization problems of health care service. For Benders 
decomposition, acceleration techniques are adopted in literature, 
including selecting the strongest cuts generated by dual solutions 
[61,62], applying combinatorial cuts to remove fractional solutions to 
the master problem [63–66], and generating strengthened Benders’ cuts 
[67]. For more acceleration techniques, please see Rahmaniani et al. 
[68] for a review. We develop an efficient stabilized Benders decom
position (SBD) algorithm to solve the appointment scheduling problem 
addressed in this study. Specifically, compared with the existing solution 
methods like those already discuss in abovementioned studies, various 
acceleration methods are carefully proposed including cut aggregation, 
feasibility cuts, and ε- optimal strategy to enhance the algorithm. The 
proposed SBD algorithm shows its superiority both in terms of compu
tation speed and solution quality, especially for large-scale problems. 

3. Problem formulation 

In this section, we present the model description for the multiserver 
time window allowance appointment scheduling problem under un
certainty with both virtual and office visits. Some notation definitions 
are developed. Considering the uncertainty in service times and no- 
shows inherently, we formulate the problem as a stochastic mixed- 
integer program (SMIP) model. 

Before virtual visits were implemented, a server’s workday was 
primarily made up of scheduled outpatient office visits. As an alterna
tive, if virtual medical service is provided, physicians must set aside time 
to process texts or videos. In this study, we focus on how clinic decision- 
maker to schedule both office and virtual visits for multiple physicians. 
The problem is that a decision-maker needs to schedule daily appoint
ments for both office and virtual visits who make their appointment 
requests far in advance. We define n patients to be the total number of 
visits with a ratio of ro office patient and re virtual patient. Set I = {1,⋯ 
, n} is the set of appointment intervals with variable lengths to be 
determined. The decision-maker must assign each patient to an 
appointment interval, and must determine the scheduled arrival time for 
the patient assigned to appointment interval i, captured by ai. Once each 
ai is decided, the length of each flexible appointment interval is fixed. 
Through our investigation and interaction with practitioners, we found 
that physicians set a time window for texting, calling, video before or 
after all office visits, which is generally applied in the medical practice 
with Internet hospitals. Motivated by the above reality and facts, we 
assume that ai must meet time window constraints for both patient 
types. That is, if an office (virtual) patient is assigned to appointment 
interval i, ai must be within the time window [a o, ao]([a e, ae]), where 
a o(a e) and ao(ae) are the allowances for earliness and lateness in the 
office (virtual) patient’s appointment time window. We define the de
cision variable yo

i (ye
i ) to be a binary variable that equals one if an office 

(virtual) patient is assigned to appointment interval i and zero 
otherwise. 

Table 1 
Model notations.   

Symbol Definition 

Sets K Set of servers with K = {1,⋯,m}

I Set of all appointment intervals with variable 
lengths I = {1,⋯, n}

S Set of scenarios 
Parameters ro(re) Proportion of office (virtual) visits to be 

scheduled 
qs

i Show-up status of the patient assigned to 
appointment interval i in scenario s 

ds
i Service time of the patient assigned to 

appointment interval i in scenario s 
co

w(ce
w) Unit waiting time cost of the office (virtual) 

patient 
co

k Unit overtime cost of server k 
cz

k Unit idle time cost of server k 
T Regular working session 
M A large number 
[a o ,ao ]([a e,

ae]) 
Time window for the scheduled arrival time of the 
office (virtual) patient 

Decision 
variables 

xik ∈ {0, 1} Binary variable, 1 if appointment interval i is set 
on server k, 0 otherwise 

ai ∈ R Continuous variable, the scheduled arrival time of 
the patient assigned to appointment interval i 

yo
i (ye

i ) Binary variable, equal 1 if an office (virtual) 
patient is assigned to appointment interval i and 
zero otherwise 

ws
i ∈ R Continuous variable, denoting the waiting time of 

the patient assigned to appointment interval i in 
scenario s 

zs
k ∈ R Continuous variable, capturing the idle time of 

server k in scenario s 
os

k ∈ R Continuous variable, representing the server k’s 
overtime in scenario s  
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We define the set of parallel servers to treat patients simultaneously 
to be K = {1,⋯,m}. The terms “server” and “physician” are used 
interchangeably. The decision variable xik is defined to be equal to one if 
appointment interval i is set on server k and zero otherwise. The servers 
may generate overtime or idle time. We calculate the overtime (the time 
of service completion time exceeding the planned session length T) of 
each server separately. There are two reasons for server vacancies. First, 
treatment of a patient may be completed before the scheduled arrival 
time of the next patient. Second, the no-show of a patient may impede 
servers from starting the treatment at the scheduled appointment time. 
We denote unit overtime cost or idle cost on server k as co

k and cz
k, 

respectively. We assume a finite set of scenarios representing service 
times’ and no-shows’ uncertainty. The show-up status and the service 
time of the patient assigned to appointment interval i in scenario s is 
denoted as qs

i and ds
i , respectively. Note that qs

i ∈ {0,1} with qs
i = 1 if the 

patient shows up, and 0 otherwise. Uncertain no-shows (time-dependent 
and different between virtual and office visits) and service time 
(different between patient types and physicians) are realized based on 
our scenario generation (see Section 5 for details). The unit waiting time 
cost incurred for an office or virtual medical service that cannot start on 
time because of the delay in previous appointment operations is denoted 
as co

w and ce
w, respectively. For all i = 1, ⋯ , n, the waiting time of the 

patient assigned to appointment interval i in scenario s is denoted as ws
i . 

Additionally, let variables os
k and zs

k represent server k’s overtime and 
idle time after finishing the server’s assigned appointments in scenario s, 
respectively. The notations applied in our model are listed in Table 1. 

The SMIP formulation of the multiserver time window allowance 
appointment scheduling problem for coordinating virtual and office 
visits where the total patient waiting time, idle time, and overtime of 
servers are minimized is as follows: 

minE

[
∑n

i=1
(co

wyo
i ws

i + ce
wye

i ws
i )+

∑m

k=1
(co

kos
k + cz

kzs
k)

]

(1a)  

s.t.
∑n

i=1
yo

i = nro (1b)  

∑n

i=1
ye

i = nre (1c)  

ye
i + yo

i = 1, ∀i ∈ I (1d)  

∑m

k=1
xik = 1,∀i ∈ I (1e)  

ai ≤ aoyo
i + aeye

i ,∀i ∈ I (1f)  

a oyo
i + a eye

i ≤ ai, ∀i ∈ I (1g)  

ap +ws
p +M

(
2 − xpk − xjk

)
≥ aj +ws

j + qs
j d

s
j ,∀p > j ∈ I, k ∈ K, s ∈ S (1h)  

zs
k ≥ ai +ws

i −
∑

j∈I,j∕=i

qs
j d

s
j xjk − M(1 − xik), ∀i ∈ I, k ∈ K, s ∈ S (1i)  

os
k ≥

∑

i∈I
qs

i d
s
i xik + zs

k − T, ∀k ∈ K, s ∈ S (1j)  

(
os

k, z
s
k

)
≥ 0, ∀k ∈ K, s ∈ S (1k)  

ws
i ≥ 0,∀i ∈ I, s ∈ S (1l)  

xik, yo
i , ye

i ∈ {0, 1}, ∀i ∈ I, k ∈ K (1m) 

Objective (1a) minimizes the total cost. The first term on the left 
calculates the sum of the waiting cost of office patients. The waiting cost 
of virtual visits is measured by the second term. The third term presents 

the total cost of the servers’ overtime and idle time. Constraints (1b) and 
(1c) describe that there are exactly nro office visits and nre virtual pa
tients to be scheduled. Constraints (1d) limit one patient type for each 
appointment interval. Constraints (1e) ensure that each patient is 
assigned to exactly one server. Constraints (1f) and (1g) restrict that 
each office and virtual appointment on server k starts within its 
requested time window, respectively. Constraints (1h) ensure that if 
appointment intervals p ∈ I and j ∈ I are set on the same physician and 
appointment interval j ∈ I is scheduled before p ∈ I, then the service 
start time of the patient assigned to appointment interval p ∈ I should 
start after the end of treatment of the patient assigned to appointment 
interval j ∈ I. Constraints (1i) and (1j) determine the idle time and 
overtime during the regular working session of server k, respectively. 
Constraints (1k), (1l), and (1m) define feasible ranges of the decision 
variables. 

4. Solution approach 

In this section, for a simple understanding, we first present the 
classical Benders decomposition with sample average approximation. By 
analyzing the structural characteristics of the SMIP formulation, the 
problem can be divided into a master problem and S subproblems 
associated with S scenarios based on the SAA approach. The master 
problem (MP) is as follows, where continuous variables δs are introduced 
to estimate the objective value of subproblem: 

MP : min
∑S

s=1
δs (2a)  

s.t.(1b) − (1g), (1m) (2b) 

Each generated scenario corresponds to one Benders subproblem. 
For scenario s, given values of assignment decisions (assigning 
appointment interval to servers x, assigning patient type to appointment 
interval y) and decisions about the patient’s scheduled arrival time a, 
one subproblem is obtained to minimize patient waiting time, server idle 
time, and overtime costs. The subproblem corresponding scenario s (SPs) 
is as follows: 

SPs(x,a,ξ(s)) :Q(x,a,ξ(s))=min
∑n

i=1
(co

wyo
i +ce

wye
i )w

s
i +
∑m

k=1
(co

kos
k + cz

kzs
k)

(3a)  

s.t. ap +ws
p +M

(
2 − xpk − xjk

)
≥ aj +ws

j + qs
j d

s
j ,∀p > j ∈ I, k ∈ K (3b)  

zs
k ≥ ai+ws

i −
∑

j∈I,j∕=i

qs
j d

s
j xjk − M(1 − xik),∀i ∈ I, k ∈ K (3c)  

os
k ≥

∑

i∈I
qs

i d
s
i xik + zs

k − T,∀k ∈ K (3d)  

(
os

k, z
s
k

)
≥ 0, ∀k ∈ K (3e)  

ws
i ≥ 0, ∀i ∈ I (3f) 

The Benders decomposition algorithm sequentially generates two 
sets of cuts optimality cuts and feasibility cuts. Feasibility cuts deliver 
essential conditions to ensure the feasibility of the primal subproblem, 
while the optimality cut provides the optimal value approximation of 
the primal subproblem when the subproblem is linear bounded. It is not 
necessary to generate feasibility cuts since the problem in (2a)–(2b), 
(3a)–(3f) has complete recourse (Proposition 1). 

Proposition 1. The SMIP problem (2a)–(2b), (3a)–(3f) has complete 
recourse. 

Proof. Observe that problem in (3a)–(3f) is always feasible no matter 
what realizations of the random vector ξ(s) and decisions of the master 
problem variables x,y and a are. As we observed, with the optimal de
cisions x,y and a, the objective function value and solution of problem 

X. Shen et al.                                                                                                                                                                                                                                    



Advanced Engineering Informatics 59 (2024) 102252

5

(3a)–(3f) can be calculated exactly when the uncertain parameters are 
realized with no need really to solve the optimization problem. 

For simplicity of presentation, we provide more details about the 
classical Benders decomposition (CBD) in Appendix A. Then, the SBD 
algorithm based on SAA is developed to solve the SMIP problem. We 
take two types of measures for SBD. One accelerates the convergence 
rate by adding constraints with more accurate information concerning 
the subproblems in each iteration (i.e., cut aggregation and feasibility 
cuts). The other changes the termination criterion by suboptimizing the 
master problem. We create this variant by observing that the master 
problems obtain too little information from the subproblems to be worth 
rigorous optimization. 

(1) Cut Aggregation. 
In the BD algorithm, the structure of subproblems (i.e., one scenario 

corresponds to one subproblem) leads to S optimal cuts being generated 
and added to the master problem for each iteration. In this case, the size 
of the master problem can be large, which undermines computational 
tractability. In addition, some redundant cuts may contribute very little 
information to obtaining the optimal solution to the master problem. 
Aggregating these cuts does not cause a loss of information while 
avoiding unnecessary computation. To address this issue, we reformu
late the master problem (2a)–(2b) and subproblem (3a)–(3f) to add the 
optimality cuts that are aggregated. We divide the subproblems based on 
servers to use as much information as possible from the subproblems 
without adding too many cuts into the master problem. Since the 
number of physicians scheduled simultaneously in practice is quite 
limited, which is far smaller than the number of scenarios, the aggre
gation greatly reduces the number of cuts and speeds up the solution 
procedure. We add all the cuts corresponding to the m sub-problems into 
the master problem and use the commercial solver Gurobi to solve the 
master problem. Presolve routines are typically incorporated in com
mercial solvers to reduce the model size before branch and cut pro
cedure. Presolve operations, which are based on logical implications or 
dual information, include tightening bounds and constraints, removing 
redundant columns and rows, and fixing variables. We formulate the 
corresponding subproblem with respect to each server, which contains 
constraints for all scenarios below. 

SPk(x, a, ξ) : min1/S(
∑S

s=1

∑n

i=1
(co

wyo
i + ce

wye
i )w

s
i xik + co

kos
k + cz

kzs
k) (4a)  

s.t. (1h) − (1l) (4b) 

In this context, the master problem changes into the following form, 
with m aggregated optimal cuts added at each iteration. Each aggregated 
cut is formed by obtaining the average information of all scenarios. 

min
∑m

k
δk (5a)  

s.t.(2b) (5b)  

δk ≥
1
S

[
∑

s∈S

∑

j<p∈I
f ks
jp

(
qs

j d
s
j − M

(
2 − xpk − xjk

)
− ap + aj

)

+
∑

s∈S

∑

i∈I
αs

ik

[

ai −
∑

j∈I,j∕=i

qs
j d

s
j xjk − M(1 − xik)

]

+
∑

s∈S
βs

k

(
∑

i∈I
qs

i d
s
i xik − T

)]

,∀k ∈ K

(5c) 

(2) Feasibility cuts. 
In the algorithm, variables δk replace the second-stage variables ws

i , 
zs

k, and os
k, resulting in rare information about the removed variables and 

corresponding operation costs contributing to the master problem. We 
use feasibility cuts proposed by Zhou et al. [34] to accelerate the algo
rithm. The feasible region is constrained by the set of feasibility cuts, 
which aids in a more effective resolution of the master problem. Feasi
bility cuts are established through solution to the newsvendor problem. 

First, the individual cost Ci is defined by the following formula: 

Ci =

{
E
[(

ci+1
w

)
xi+1,kwi+1 + cz

kzik
]
, i = 1, 2,⋯, n − 1, k ∈ K

E
[
co

kok + cz
kzik
]
, i = n, k ∈ K

(6a) 

where zik denotes the idleness of server k after serving the patient 
assigned to appointment interval i satisfying 

∑
i∈Izik = zk. 

Proposition 2. For any given decisions x, bounds on the individual cost Ci 
can be strengthened as follows: 

Ci ≥

{
xi+1,kgi, i = 1, 2,⋯, n − 1, k ∈ K

gi, i = n (6b) 

where 

gi =

⎧
⎪⎨

⎪⎩

min
si

E
[(

ci+1
w

)
[di − si]

+
+ cz

k[di − si]
−
]
, i = 1,⋯, n − 1, k ∈ K

min
sn

E
[
co

k [di − si]
+
+ cz

k[di − si]
−
]
, i = n, k ∈ K

(6c) 

In the above formula, si, i = 1,⋯, n are defined as the length of 
appointment interval scheduled for patient i. Note that [a]+ =max{a,0}, 
and [a]− = max{ − a,0}. 

Proof: For any i = 1,2,⋯,n − 1, we have Ci ≥ xi+1,kE[ci+1
w wi+1 + cz

kzik]. 
We derive the bounds on E[ci+1

w wi+1 + cz
kzik]. The following equality 

holds from the definition: 

E
[
ci+1

w wi+1 + cz
kzik
]
= E

[
ci+1

w [wi + di − si]
+
+ cz

k[wi + di − si]
−
]

= Ewi

{
Edi

[
ci+1

w [wi + di − si]
+
+ cz

k[wi + di − si]
−
|wi
]}

Let s*
i = argminmin

si
Edi [
(
ci+1

w
)
[di − si]

+
+ cz

k[di − si]
−
], where s*

i is the 

optimal solution to achieve gi. We have the following inequality based 
on the definition: 

gi ≤ Edi [c
i+1
w [di − s̃i]

+
+ cz

k

[

di − s̃i

]−

],∀s̃i 

For any realization of wi, let s̃i = si − wi and substitute it into the 
above formula. Hence, we have: 

gi⩽Edi

[
ci+1

w [wi + di − si]
+
+ cz

k[wi + di − si]
−
|wi]

Then, the inequality still holds after taking expectation for wi for the 
right side of above formula. Hence, we have: gi ≤ E

[
ci+1

w wi+1 +cz
kzik
]
. That 

is, gi is a bound of E
[
ci+1

w wi+1 +cz
kzik
]

for any si. In a similar way, Ci can 
also be bounded when i = n. The proof is complete. 

The following feasibility cuts are added to the master problem to 
help bound δk the operational cost decomposed by each server. 

δk ≥
∑n− 1

i− 1
xi+1,kgi + gn,∀k ∈ K (6d) 

Note from Equation (6c) that it can be viewed as a general news
vendor problem with an optimal solution s*

i and an optimal cost gi. Thus, 
we can obtain the optimal solution s*

i by the critical fractile of a cumu
lative probability distribution Fi for service time di. The corresponding 
calculation formula is Fi

(
s*
i

)
= ci+1

w /(ci+1
w + cz

k), i = 1, ⋯, n − 1. In this 
context, the optimal cost gi can be achieved easily by taking the integral. 
Notably, we have two types of visits with different unit waiting costs and 
service times. We treat patients in the same category, assuming all are 
either virtual patients or office visits. Then, we calculate s*

i and the 
optimal cost gi under the corresponding unit waiting cost and service 
time. We use the smaller optimal cost gi for constructing feasibility cuts. 

(3) ε- optimal strategy. 
Since Benders decomposition comes with significant drawbacks, 

such as a weak master problem that restricts the dual cuts to the scenario 
sub-problems after the relaxation step, Geoffrion and Graves [43] 
considered that the master problem does not need to seek its optimal 
solution and can be stopped when the resulting feasible solution is better 
than the current optimal solution. The master problem is used only to 
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find a feasible solution to the problem. This strategy for solving the 
master problem suggests that the master problem does not provide a best 
lower bound on the optimal value of the initial problem (1a)–(1m). For 
adopting the strategy, first, we reformulate the relaxed master problem 
by incorporating information pertaining to the scenario sub-problems 
into the master problem to strengthen its formulation. The stochastic 
model’s deterministic counterpart where all random variables (e.g. pa
tients’ show-up status and service time) are replaced by their expecta
tion values is included in the master problem. The master problem is 
reformulated as follows: 

min
∑m

k
δk +

∑m

k

∑n

i=1

((
co

wyo
i + ce

wye
i

)
wv

i xik + co
kov

k + cz
kzv

k

)
(7a)  

ap +wv
p +M

(
2 − xpk − xjk

)
≥ aj +wv

j + μq
j μd

j ,∀p > j ∈ I, k ∈ K (7b)  

zv
k ≥ ai +wv

i −
∑

j∈I,j∕=i

μq
j μd

j xjk − M(1 − xik),∀i ∈ I, k ∈ K (7c)  

ov
k ≥

∑

i∈I
μq

j μd
j xik + zv

k − T,∀k ∈ K (7d)  

(5b)–(5c), (6d) (7e)  

(
ov

k, z
v
k

)
≥ 0, ∀k ∈ K,wv

i ≥ 0, ∀i ∈ I (7f) 

where we define virtual waiting time wv
i (i = 1,⋯, n) for patient i, 

virtual idle time zv
k(k = 1,⋯,m) and virtual overtime ov

k(k = 1,⋯,m) for 
server k. Objective (7a) includes the information related to the removed 
variables ws

i , zs
k, and os

k. Constraints (7b)–(7d) are obtained from Con
straints (3b)–(3d), respectively, and provide estimates of the patient 
waiting time, server idle time, and overtime. 

Then, a permissible error ε > 0 is introduced. The algorithm termi
nates when the current master problem cannot find a feasible solution 
below UB − ε. The current best feasible solution is the ε- optimal solution 
to the initial problem (1a)–(1m). We can easily find that this variant 
must converge to an ε-optimal solution within a limit number of itera
tions [43]. Under this ε- optimal strategy, the following new Benders 
cuts are added to the master problem: 

∑

k∈K

[
1
S

[
∑

s∈S

∑

j<p∈I
f ks
jp

(
qs

j d
s
j − M

(
2 − xpk − xjk

)
− ap + aj

)

+
∑

s∈S

∑

i∈I
αs

ik

[

ai −
∑

j∈I,j∕=i

qs
j d

s
j xjk − M(1 − xik)

]

+
∑

s∈S
βs

k

(
∑

i∈I
qs

i d
s
i xik

− T

)]]

≤ (UB − ε)
(8) 

Applying the above-improved measures to the original Benders 
master problem, we can convert it to the Formulas (9a)–(9b): 

min
∑m

k
δk +

∑m

k

∑n

i=1
(co

wyo
i + ce

wye
i )w

v
i xik + co

kov
k + cz

kzv
k) (9a)  

s.t. (7a)–(7f), (8) (9b) 

Finally, the stabilized Benders decomposition algorithm with 
enhanced measures can be expressed as follows:  

SBD algorithm for the proposed problem 

1: Initialization. Set UB = + ∞. Select a convergence tolerance parameter ε ≥ 0. 
2: Solve the master problem (9a)–(9b). 
3: if the master problem is feasible then 
4: Record the optimal solutions (x* , y*, a*, δ* , μq) and the optimal objective value zMP. 
5: Stochastic service time and time-dependent no-shows scenario generation. Sample 

S = 1000 i.i.d. realizations (qs
1, ds

1), ..., (qs
n , ds

n), s = 1, ..., S by given service time 
distribution and no-shows with mean μq. 

6: for each k ∈ [1,m] do 

(continued on next column)  

(continued ) 

SBD algorithm for the proposed problem 

7: Solve the subproblem SPk (4a)–(4b) with x*, y*, a* and record the optimal objective 
value zSP

k . 
6: Get the extreme point. 
7: Add optimality Benders cut (5c) to the master problem. 
8: end for 
9: Calculate δ = 1/S(

∑S
1zSP

s ). 
10: Set UB = min

{
UB, zMP +δ − δ*}. 

11: Go to line 2. 
12: else if the master problem is infeasible 
13: terminate. return the current best feasible solution x*, y*, a* as the ε- optimal 

solution and UB as the ε- optimal value. 
14: end if  

The proposed model and method can be extended to solve the 
appointment scheduling problem by considering other features and 
situations, such as unpunctuality: earliness or lateness, cancelations, etc. 
[36,56]. To model patient unpunctuality, the key idea is to calculate the 
actual arrival time of the patient through a′

i = ai + ui, where ai is the 
appointment time without unpunctuality studied previously, and ui ∈

[− U,U]. Specifically, a negative ui represents that patient i arrives earlier 
than her appointment time; otherwise, a positive ui represents patient’s 
lateness. U is the bound for earliness/lateness in the unpunctual time 
window. The main concept behind modeling patient cancellation is to 
view the patient as a “ghost” patient with 0 service time. As for the 
Benders decomposition algorithm, since BD is an effective framework 
for solving a large-scale mixed-integer program, it can be customized to 
other appointment models with various specific situations. The pro
posed acceleration techniques can also be extended to fit other models. 
The cut aggregation method can enhance the algorithm efficiency for 
multiserver appointment models with separable subproblems. The 
feasibility cuts can be applied for similar appointment scheduling 
problems with patient unpunctuality, or cancellations, etc. They can be 
used to these problems to obtain an individual cost lower bound by 
adjusting the service time or the appointment time. The ε- optimal 
strategy is a type of general strategy that can be incorporated into any 
BD framework. 

5. Numerical studies 

In this section, first, we verify the efficiency of our proposed algo
rithm through numerical studies. Then, we investigate the performance 
of the joint multiserver appointment scheduling model under homoge
neous and heterogeneous physicians for virtual and office care, respec
tively, and we further compare it with the problem formulation as 
several separated single-server models. Moreover, we study a scenario 
where the system allows virtual visits to arrive during the specified 
period by adding time window constraints. Under various time- 
dependent show-up patterns of office and virtual patients, system 
operational performances in the above scenario are evaluated. Finally, 
we analyze the impact of cost weighting coefficients on the system 
performance measures. We exhibit representative scenarios and elabo
rate upon some necessary observations in each subsection. 

5.1. Input data 

In this subsection, we interpret the scenario generation before 
evaluating the performance of the algorithm and system. Our dataset 
consists of the real service time data records and simulated no-show data 
of office and virtual visits. We first collected the service time data of both 
types of patients who visited the Department of Endocrine at Shanghai 
Sixth People’s Hospital from 3 June 2020 to 31 December 2020. 
Shanghai Sixth People’s Hospital is a comprehensive hospital with 33 
clinical departments and 9 technical departments. It has its own Internet 
hospital and provides both office and virtual medical services. 
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Specifically, the data shows that office service time ranges from 0 to 26 
min, with the average being 9.53 min. The virtual service time varies 
between 0 and 36 min, with an average of 14.79 min. The 95 % confi
dence intervals for the means of office and virtual service times are 
[7.82,11.24] and [12.93,16.65] minutes, respectively. All the service 
time data used in numerical studies were generated based on the above 
real data characteristics. 

Kong et al. [4] analyzed two datasets and found that patient atten
dance behavior is significantly impacted by the time of day. Potential 
reasons may be people’s different life schedules, patient populations, 
and the culture of attitude toward time. We generate time-dependent no- 
show scenarios to incorporate the no-show’s property of time- 
dependent. First, we define time-dependent no-show scenarios as fol
lows. For each patient i = 1, ⋯ , n, the random variable of the no-show 
status Q ∈ {0,1} follows the Bernoulli distribution with a parameter μq

i . 
That is, Q ∼ B(μq

i ). A scenario s for patient i contains her no-show in
formation qi(e.g., qi = 1 represents show, and qi = 0 represents no- 
show). qi is a realization of Q, and the index set of scenarios is deno
ted by S := {s}. Because the show status of a real appointment is known 
at the time it was scheduled, we cannot know if the same appointment 
would have had the same show status if it is scheduled at another time. 
In this context, we use two piecewise linear functions to emulate the 
show-up pattern of office and virtual visits, similar to the observations in 
Kong et al. [4]. We consider the piecewise linear function for the office 
(virtual) patient time-dependent show-up pattern that has R segments 
with corresponding breakpoints tor (ter ), r = 0,⋯,R and function values 
pro

r
(
pre

r
)
,r = 0,⋯,R. We can obtain its show-up probability μq

i , i = 1,⋯, n 
for any given patient’s scheduled arrival time ai, i = 1, ⋯, n. In the 
proposed improved benders decomposition algorithm, based on the 
framework of the algorithm, the master problem is solved first, and the 
patient’s scheduled arrival time ai, i = 1,⋯, n is obtained. According to 
the piecewise linear function, the show-up probability μq

i corresponding 
to ai is obtained. Based on μq

i , i = 1,⋯,n, a set of scenarios is generated 
following Bernoulli distribution. Then the solution of the decision var
iables of the master problem and these generated scenarios are 
substituted into the sub-problems to solve the sub-problems. 

Service times and time-dependent no-shows for office and virtual 
visits with sample size S = 1000 are realized based on the above pro
cedure. By conducting a survey of visits’ show-up preference at different 
times if they have an virtual or office appointment, we estimate an 
increasing shape for virtual patient show-up pattern with show rate 
pre

0 = 0.45 at time 0, pre
1 = 0.75 at time T/2, and pre

2 = 0.95 at time T, 
and a decreasing shape for office patient show-up pattern with show rate 
pro

0 = 0.9 at time 0, pro
1 = 0.7 at time T/2, and pro

2 = 0.4 at time T. 
Through a discussion with physicians in practice, we determined the 
unit waiting time costs for virtual and office patients, unit costs for 

outpatient physician idle time and overtime to be ce
w = 1, co

w = 0.8, cz
k =

1, and co
k = 1.5, respectively. These settings represent our base case on 

which real-world inspired numerical studies are conducted. It can reflect 
our field study in the Department of Endocrine at Shanghai Sixth Peo
ple’s Hospital of China. 

5.2. Algorithm performance 

To study the efficiency of the algorithm, we generate many instances 
based on the real service data and no-show simulated data. We consider 
different numbers of servers and patients, with 25 % virtual and 75 % 
office visits. Fifteen pairs of (n, m) with five instances of each with co

k =

0.7, 0.9,1.1, 1.3, 1.5 are studied. The length of the time limit is set at T =

(nroμd
ok + nreμd

ek)/m, which coordinates with the number of servers and 
patients. Then, all the results from our SBD method are compared with 
the benchmark. Gurobi is used to solve the SAA-based stochastic pro
gramming problem as the benchmark. We calculate the minimum, 
average, and maximum running times of solving the problem. Table 2 
summarizes the comparison results. The numerical instances are con
ducted on a PC with an Intel Core i7-10700 CPU 2.90 GHz and 16 GB 
memory. The master problem and subproblems of the proposed SBD 
algorithm are solved by calling Gurobi 9.0.2 on Python 3.7 with the 
default settings. 

We first investigate the computation speed performance of the pro
posed SBD algorithm. We set the computational time limit to 18,000 s (e. 
g. five hours). The performance results of SBD’s computation speed are 
summarized in Table 2. The results indicate that the stabilized BD 
significantly reduces the minimum, average, and maximum computa
tional times. For small-size problems, our method can obtain ε- optimal 
solutions within 2 min, while Gurobi consumes nearly 1.5 h computa
tion time on average. As the scale of the problem grows, running time 
becomes longer for both our method and the benchmark. The running 
time of the SBD algorithm grows slowly, while that of Gurobi grows 
rapidly with increasing instance size. The SBD algorithm performs much 
more stably. For instances of medium and large scales, the benchmark 
cannot find the optimal solution within the time limit (e.g. 18000 s). Our 
algorithm can solve all problem instances within 2000 s. Typically, our 
algorithm requires a surprisingly small number of iterations for 
convergence, even with very small values of the optimality tolerance ε. 
These findings indicate the stabilized BD algorithm is indeed much more 
efficient than the solver Gurobi. 

Since Gurobi cannot output the optimal solution after running for 5 
h, it is not necessary to limit the calculation time to 5 h to compare the 
quality of the solution. To make a fair comparison and save computing 
time, we limit the computing time to 1000 s, and set the number of 
scenarios to be 500. To study the proposed SBD’s performance in 

Table 2 
Running time performance of the SBD algorithm.  

Scale m n Average Time STD MIN MAX 

SBD Gurobi SBD Gurobi SBD Gurobi SBD Gurobi 

Small 20 1  67.19 3.88  9.06 0.33  50.99 3.61  71.38 4.42 
12 2  45.92 1296.33  8.97 1032.69  36.1 286.76  53.34 2902.42 
10 3  56.58 2154.04  0.28 1189.03  56.38 670.69  57.06 3674.22 
14 2  47.91 4057.99  0.15 3406.32  47.75 1058.66  48.11 9432.24 
15 2  64.57 5213.09  13.96 5786.01  54.08 1348.05  79.99 15307.78 

Medium 20 2  92.65 >18000  0.32 –  92.14 16939.76  92.95 >18000 
25 3  228.65 >18000  45.24 –  207.87 >18000  309.57 >18000 
20 5  380.40 >18000  75.06 –  345.5 >18000  514.66 >18000 
30 3  353.12 >18000  79.26 –  294.19 >18000  441.4 >18000 
40 2  268.26 >18000  60.29 –  223.67 >18000  335.4 >18000 

Large 50 2  591.21 >18000  119.02 –  536.28 >18000  804.1 >18000 
40 3  920.02 >18000  206.22 –  768.09 >18000  1146.59 >18000 
60 2  513.01 >18000  0.94 –  512.25 >18000  514.58 >18000 
40 4  680.50 >18000  2.07 –  678.46 >18000  683.87 >18000 
50 5  1702.95 >18000  353.47 –  1312.94 >18000  1964.38 >18000  
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solution quality, we compare the associated overall system cost for best 
feasible solutions obtained by Gurobi, CBD and SBD after running 1000 
s. The comparison results of small-, medium-, large-scale instances are 
summarized in Tables 3–5. Column “Gurobi” reports the solution by 
Gurobi after it reaches the time limit or out of memory. Compared with 
the classical Benders decomposition algorithm, the solution quality of 
the proposed SBD is significantly and consistently superior. This implies 
that the acceleration techniques take effects as CBD coverages rather 
slowly through iteration process and yields poor solutions. In compari
son to Gurobi, for small-scale instances, we compute the gap between 
the solution value generated by the SBD (ObjSBD) and the solution value 
generated by the Gurobi (ObjGurobi) as follows: GAPSBD− Gurobi =

100*(ObjSBD − ObjGurobi)/ObjGurobi. The SBD can generate near equally 
good solutions with an overall average gap of 5.85 % over all 12 in
stances. As the problem scale rises with an increasing number of patients 
and servers, the solutions generated by SBD are always better to those 
generated by Gurobi. And the improvement is more pronounced for 
large-scale instances than for medium-scale instances. 

5.3. The performance of multiserver time window allowance schedules 

5.3.1. The performance of multiserver model compared with single-server 
model 

In this subsection, we aim to investigate, in terms of the performance 
of virtual and office patient scheduling systems, whether the joint 
multiserver model (MSAS) has advantages over the separated single- 
server model (SSAS) in previous studies [4,15,29]. To verify the effec
tiveness of the MSAS model, two sets of numerical studies have been 
implemented. One set is for homogeneous physicians with the same 
properties. The other set is for heterogeneous physicians with different 
service times, overtime and idle time costs. Separated single-server 
models are simulated for multiple servers by repeating single-server 
results multiple times and are compared to the MSAS with the same 
number of servers. We first present the analysis for homogeneous phy
sicians in Appendix B, while each physician’s behavior varies depending 
on the physician’s habits, treatment methods, and patience in practice. 
Therefore, more examples are generated with heterogeneous servers 
based on our dataset in Section 5.1. In this situation, the service times of 
different physicians treating office and virtual visits are modelled by 
nonidentical normal distributions differentiated by their means μd

ok
(
μd

ek
)
,

k = 1,⋯,m and standard deviations σd
ok(σd

ek), k = 1,⋯,m within the 
actual office and virtual service intervals. Different server parameter 
configurations are listed in Table 6. We examine a two-sever virtual and 
office patient scheduling problem with 40 visits (40 % virtual, 60 % 
office patients) and T = (nro

∑m
k=1μd

ok/m + nre
∑m

k=1μd
ek/m)/m. Seven 

experiments are implemented to study the impact of physician hetero
geneity in service efficiency, service efficiency stability, overtime costs, 
and idle costs on the performances of the SSAS and the MSAS. 

The comparison results of the system performances using the SSAS 
and the MSAS for each case are summarized in Table 7. Specifically, 
Cases 1 and 2 assume two heterogeneous physicians with different ser
vice efficiencies, which is achieved by modelling their service times as 

Table 3 
Comparison of solution quality between SBD, CBD, and Gurobi on small-scale 
instances.  

n m co
k Obj 

SBD CBD Gurobi 

20 1  0.7  100.0  1368.1  92.3  
1.5  100.0  1396.3  92.3 

12 2  0.7  40.0  487.9  35.9  
1.5  39.6  527.4  38.0 

10 3  0.7  27.4  359.1  25.5  
1.5  24.7  397.5  28.5 

13 2  0.7  45.8  529.9  42.7  
1.5  50.0  571.6  43.1 

14 2  0.7  54.1  557.7  51.3  
1.5  52.3  603.1  50.5 

15 2  0.7  60.7  685.7  55.5  
1.5  57.4  734.0  56.2  

Table 4 
Comparison of solution quality between SBD, CBD, and Gurobi on medium-scale 
instances.  

n m co
k Obj 

SBD CBD Gurobi 

20 2  0.7  91.9  1243.0  104.0  
1.5  105.9  1308.0  113.0 

20 3  0.7  76.1  1201.4  127.8  
1.5  80.0  1278.7  136.0 

25 3  0.7  99.3  2000.8  189.9  
1.5  106.7  2098.5  259.7 

20 5  0.7  65.0  1168.1  140.5  
1.5  89.4  1255.2  279.9 

30 3  0.7  131.7  2763.8  459.8  
1.5  167.7  2880.8  496.8 

40 2  0.7  298.9  5224.5  493.0  
1.5  276.9  5355.9  497.6  

Table 5 
Comparison of solution quality between SBD, CBD, and Gurobi on large-scale 
instances.  

n m co
k Obj 

SBD CBD Gurobi 

50 2  0.7  367.4  7857.6 19367.2  
1.5  335.8  8021.7 1695.0 

40 3  0.7  226.8  4968.6 986.4  
1.5  205.7  5124.6 1068.1 

50 3  0.7  324.9  7539.4 1248.1  
1.5  286.6  7734.2 1322.5 

60 2  0.7  501.3  11196.7 –-  
1.5  488.2  11391.4 –- 

40 4  0.7  221.6  4840.6 785.4  
1.5  164.6  5009.0 864.2 

50 5  0.7  273.3  7284.9 –-  
1.5  247.8  7504.2 –-  

Table 6 
Parameter configurations for heterogeneous servers.  

No. of Case 1 2 3 4 5 6 7 

No. of Server 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 

μd
ok 8 8.5 8 9 8 8 8 8 8 8 8 8 8 8 8 

μd
ek 13 13.5 13 14 13 13 13 13 13 13 13 13 13 13 13 

Cov 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.8 0.2 0.2 0.2 0.2 0.2 0.4 0.8 
σd

ok 1.6 1.7 1.6 1.8 1.6 3.2 1.6 6.4 1.6 1.6 1.6 1.6 1.6 3.2 6.4 

σd
ek 2.6 2.7 2.6 2.8 2.6 5.2 2.6 10.4 2.6 2.6 2.6 2.6 2.6 5.2 10.4 

co
k 1 1 1 1 1 1 1 1 1 1.5 1 5 1 1 1 

cz
k 1 1 1 1 1 1 1 1 1 1.5 1 5 1 1 1  
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nonidentical distributions with various means. The difference in effi
ciency between the two servers in Case 2 is greater than that in Case 1. 
We keep the other parameters the same between Cases 1 and 2. The 
results indicate that the MSAS model decreases total costs by 12.58 % 
and 22.87 % for Cases 1 and 2, respectively. The percentage decrease in 
cost for Case 2 by using the MSAS model is 10.29 % greater than that for 
Case 1. In addition, we consider two heterogeneous physicians differ
entiated by their standard deviation in service times (e.g. Cases 3 and 4), 
unit overtime, and idle costs (e.g. Cases 5 and 6). The remaining server 

parameters remain the same. The differences between the two servers in 
Case 4 (Case 6) are more significant than those in Case 3 (Case 5). We 
also explore how the number of heterogeneous physicians affects the 
performance of the MSAS model and conduct a comparative analysis of 
them. The comparison results of Cases 3, 4, and 7 (see Table 7) indicate 
that more heterogeneous physicians will improve the cost reduction 
effect of the MSAS, resulting in a larger performance gap between it and 
the SSAS. 

We can obtain the following conclusions from the results. In the 
virtual and office patient scheduling system, the multiple server model 
has a limited impact on cost reduction when the servers are 

Table 7 
Objective value comparison results of MSAS and SSAS under heterogeneous servers.  

No. of Case 1 2 3 4 5 6 7 

SSAS  270.55  307.31  353.14  457.65  334.54  441.59  679.36 
MSAS  236.52  237.04  321.2  411.89  260.4  321.68  524.18 
Improvement  12.58 %  22.87 %  9.04 %  10.00 %  22.16 %  27.15 %  22.84 %  

Table 8 
Parameters settings of office and virtual patient show-up patterns.  

Patient type Show-up Pattern tor (ter ) 0 T/2 T 

Office patient I pro
r  0.4  0.7  0.9 

II  0.9  0.7  0.4 
III  0.4  0.9  0.4 
IV  0.9  0.4  0.9 

Virtual patient I pre
r  0.45  0.75  0.95 

II  0.95  0.75  0.45 
III  0.45  0.95  0.45 
IV  0.95  0.45  0.95  

Table 9 
The comparison results under 16 show-up pattern combinations.  

Combo Show-up Pattern Schedule 1 Schedule 2 Schedule 3 Schedule 4 

Virtual patient Office patient 

1 I I  241.60  199.33*  298.78  215.47 
2 II  215.86  201.21*  273.37  211.22 
3 III  238.07  207.91*  278.27  226.93 
4 IV  232.28  174.20*  287.17  197.62 
5 I II  225.41  181.68  171.88*  181.70 
6 II  190.10  183.21  171.44  169.98* 
7 III  222.24  171.67  168.97*  172.63 
8 IV  216.99  177.50  177.46  177.01* 
9 I III  270.07  215.26*  268.42  232.43 
10 II  197.12*  215.45  248.18  200.57 
11 III  258.70  215.78*  251.80  252.60 
12 IV  242.52  195.31*  260.43  210.96 
13 I IV  204.01  195.60  202.73  192.17* 
14 II  159.53*  185.44  193.02  169.70 
15 III  194.58  188.37*  193.00  188.47 
16 IV  179.48  162.68*  201.23  166.40  

* represents the lowest cost achieved under the optimal schedule. 

Fig. 1. Scheduling results of four types of time window allowance schedules under Combo 2.  

Table 10 
The detailed comparison results under show-up pattern Combo 2.  

Combo Performance Schedule 1 Schedule 2 Schedule 3 Schedule 4 

2 Obj  215.86  201.21  273.37  211.22 
To

w  158.03  92.84  113.94  118.76 
Te

w  34.12  83.38  65.76  67.83 
Tw  192.15  176.21  179.70  186.59 
To  0.05  0.00  2.86  0.00 
Ti  23.66  25.00  90.81  24.63  
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homogeneous. By keeping other server configurations fixed, for more 
heterogeneous servers with more significant differences in terms of 
service efficiency, service efficiency stability, overtime costs, and idle 
costs, the benefits brought by the MSAS will be greater than those 
brought by the SSAS. Thus, the managerial insight that we provide to 
hospital practitioners is to choose the appropriate scheduling model 
based on the differentiation degree between the physicians being 
scheduled. Specifically, when there is no significant difference between 
the physicians being scheduled, the SSAS is recommended to obtain 
similar results with less computation time if fast scheduling is needed. In 
contrast, when there are significant differences between the physicians 
being scheduled, the MSAS should be selected to realize considerable 
cost savings from less patient waiting, physician idle and overtime costs. 

5.3.2. Impact of appointment time windows under time-dependent show-up 
patterns 

In this subsection, we consider a single server and 28 patients, with 
25 % virtual and 75 % office visits. The length of the time limit is set at 
T = 300. To avoid the impact of the cost parameters on the result, we set 
the cost ratio as co

w: ce
w: cz

k : co
k = 1:1:1:1. To investigate how different 

specified appointment time windows for virtual visits under various 

Fig. 2. Scheduling results of four types of time window allowance schedules under Combo 5.  

Table 11 
The detailed comparison results under show-up pattern Combo 5.  

Com Performance Schedule 1 Schedule 2 Schedule 3 Schedule 4 

5 Obj  225.41  181.68  171.88  181.70 
To

w  163.49  99.10  84.38  99.57 
Te

w  35.89  56.77  28.63  56.38 
Tw  199.38  155.88  113.01  155.95 
To  0.00  0.05  6.02  0.05 
Ti  26.04  25.76  52.85  25.70  

Table 12 
The results for different ratio of virtual visits.  

re ro MTWAS–[0, T/2] MTWAS–[T/2, T] MTWAS–[0, T]  

0.25  0.75 334.3  225.7* 347.1  
0.35  0.65 358.7  254.9* 375.7  
0.5  0.5 438.3  277.5* 421.8  
0.65  0.35 490  408.7 383.3*  
0.75  0.25 702.6  589.2 445*  

* represents the lowest cost achieved under the optimal schedule. 

Table 13 
The results for different combinations of cost coefficients.  

Case co
w ce

w cz
k co

k Obj wo we w ti to toi 

1 0.1 1 1 1  99.46  164.48  58.61  223.10  24.27  0.12  24.39 
2 0.5 1 1 1  140.87  74.56  77.56  152.12  25.15  0.87  26.02 
3 2 1 1 1  226.88  54.28  90.51  144.79  24.44  3.38  27.82 
4 10 1 1 1  626.64  50.63  90.92  141.56  24.62  4.59  29.21 
5 1 0.1 1 1  99.37  64.33  83.96  148.30  24.82  1.82  26.64 
6 1 0.5 1 1  127.59  54.70  90.54  145.24  24.31  3.31  27.63 
7 1 2 1 1  302.03  134.56  71.56  206.12  23.94  0.41  24.35 
8 1 10 1 1  794.77  144.33  62.59  206.93  24.31  0.19  24.50 
9 1 1 0.5 1  161.38  63.57  83.47  147.04  24.98  1.84  26.82 
10 1 1 2 1  199.67  64.07  84.04  148.11  24.86  1.83  26.70 
11 1 1 10 1  444.11  138.15  63.85  202.00  24.20  0.14  24.34 
12 1 1 15 1  620.80  242.16  71.35  313.50  20.46  0.45  20.90 
13 1 1 1 0.5  235.58  92.77  92.10  184.87  20.02  3.08  23.10 
14 1 1 1 10  191.23  64.08  83.98  148.06  24.86  1.83  26.69 
15 1 1 1 15  237.56  152.84  58.29  211.13  24.38  0.14  24.51 
16 1 1 1 20  238.24  152.84  58.29  211.13  24.38  0.14  24.51  

Table B1 
Objective value comparison results of MSAS and SSAS under homogeneous servers.  

m 2 3 4 5 6 

n 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 

MSAS  87.87  273.01  411.36  76.61  213.65  392.83  72.65  213.35  359.57  70.64  187.05  309.13  88.57  164.38  293.02 
SSAS  83.1  263.64  457.02  77.59  229.82  395.46  62.27  166.19  413.22  72.93  170.5  349.42  49.91  153.46  249.29  
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patient show-up patterns impact the performance of the integrated vir
tual and office appointment scheduling system, we consider four types of 
MTWAS with different specified appointment time windows for virtual 
patients: Schedule 1 (MTWAS–[0, T/3], allowing virtual visits to be 
scheduled during period [0, T/3] only), Schedule 2 (MTWAS–[T/3, 2 T/ 
3], allowing virtual patients to be scheduled during period [T/3, 2 T/3] 
only), Schedule 3 (MTWAS–[2 T/3, T], allowing virtual visits to be 
scheduled during period [2 T/3, T] only) and Schedule 4 (MTWAS–[0, 
T], allowing virtual patients to be scheduled during the entire working 
session). Furthermore, four show-up patterns for both office and virtual 
visits are considered: Pattern I (increasing), Pattern II (decreasing), 
Pattern III (first increasing then decreasing), and Pattern IV (first 
decreasing then increasing). They are represented by two-piece piece
wise linear functions, and the associated breakpoint parameters and 
function values are set in Table 8. Therefore, there are 16 combinations 
of show-up patterns (hereafter referred to as Combo). In this study, we 
compare the solution performance of the proposed time window 
allowance Schedules 1–3 with Schedule 4 extensively discussed in pre
vious studies [15,28,29,36]. Numerical instances for the 16 show-up 
pattern Combos under the four types of MTWAS are generated accord
ing to our dataset in Section 5.1. 

The total cost results for the 16 Combos of show-up patterns are 
shown in Table 9. The results show significant differences in the per
formance of different time window allowance schedules. Among them, 
when the show-up pattern of office visits is an increasing shape, the costs 
under the four schedules always satisfy Schedule 2 < Schedule 4 <
Schedule 1 < Schedule 3; that is, Schedule 2 can obtain the lowest cost, 
and Schedule 3 is the worst decision. Schedule 1 shows the worst per
formance when the show-up pattern of office patients is decreasing, 
regardless of the virtual visits’ show-up pattern. Schedule 3 is most 
beneficial to the overall service system under Combos 5 and 7. Under 
Combos 6 and 8, there are no significant performance differences be
tween Schedules 4 and 3 to be best decisions. Notably, when the show- 
up pattern for office patients is first increasing then decreasing and the 
Combos are 9, 11, and 12, the performance of Schedule 2 is significantly 
better than that of the other three types of time window allowance 
schedules. 

For presentation brevity and illustration purposes, we present the 
results for Combos 2 and 5 to provide further explanations as two ex
amples. Other cases of office and virtual show-up pattern combinations 
can be analyzed in a similar way. Fig. 1 reports the appointment 
schedules of the four types of time window allowance schedules under 
Combo 2. When the show-up patterns of the two types of visits is Combo 
2, the appointment schedule under Schedule 1 starts with two office 
patients and consecutive virtual visits, followed by the remaining 
consecutive office visits. The arrival time of the two types of patients is 
scheduled later because virtual visits with longer service times are ar
ranged in the front where the corresponding show probability is higher, 
while office patients are arranged in the latter position with the higher 
show probability. Conversely, under Schedule 2, the better result is 
achieved when office visits are scheduled first with office visits’ lower 
show probability until all office visits are allocated. Then, subsequent 
virtual patients start to be arranged in the period with a relatively lower 
show-up probability. Consequently, the arrival times of all visits are 
scheduled earlier. For Schedule 3, its schedule result is similar to 
Schedule 2; all office visits will arrive before virtual visits. The difference 
is that the first office patient is scheduled to arrive much later at time 
64.57 min, and the entire schedule is shifted later. As the increasing 
show-up pattern has a low show probability at the front of the timeline, 
if patients are scheduled at the front, the schedule is very tight, and the 
arrival interval between two consecutive patients is even smaller. In 
addition, given the time window constraints of virtual visits, the arrival 
time between the last office patient and the first virtual patient will 
definitely be far apart, resulting in a significant increase in idle time. 
Therefore, scheduling the first office patient at a later time reduces the 
risk of an over increasing idle time. For Schedule 4, the scheduled arrival 

times between patients of the same category present a more decentral
ized manner, with alternating scheduling between office and virtual 
visits. 

Table 10 demonstrates the comparison results of each detailed cost in 
terms of system performance measures (e.g. virtual and office patient 
waiting costs Te

w, To
w, server overtime costs To, idle time costs Ti, and 

total costs Obj) for different schedules. As shown in Table 10, Schedule 2 
performs significantly better than the other three types of time window 
allowance schedules. Compared to Schedule 1, Schedule 2, which places 
a larger number of office visits in front of a smaller number of virtual 
visits, makes the reduction in waiting time for office patients more than 
the increase in waiting time for virtual visits. Consequently, total wait
ing time is reduced because patient service times are uncertain, and the 
First In First Out rule requires the previous service to be completed 
before the next service can begin, creating waiting times based on 
schedules. Accumulation and propagation of this stochastic uncertainty 
over time increase the risk that patients who arrive later in the overall 
schedule will wait longer. Therefore, with overtime and idle time being 
nearly equal, Schedule 2 is better than Schedule 1. Total patient waiting 
time under Schedule 3 is nearly the same as that under Schedule 2. 
However, idle time under Schedule 3 is greater than that under Schedule 
2, resulting in a significant increase in total costs as well. Schedule 4 
performs nearly the same as Schedule 1. 

Notably, for all office and virtual show-up pattern combinations, 
Combo 5 represents the scenario that currently exists in the Department 
of Endocrine at Shanghai Sixth People’s Hospital. As demonstrated in 
Fig. 2, the appointment schedule under Schedule 1 starts with five office 
visits and consecutive virtual patients, followed by remaining consecu
tive office visits. Again, it’s still not a good decision to put most office 
patients in the back, resulting in a long waiting time. Schedule 2 and 
Schedule 4 have very similar schedules, and corresponding performance 
is almost the same. The appointment schedule under the two schedules 
starts with 15 consecutive office visits and consecutive virtual visits, 
followed by remaining subsequent office patients. 

The performance evaluation corresponding to the above schedules is 
as shown in Table 11. In this case, Schedule 3 is the best decision, so we 
recommend scheduling virtual visits in the period [2 T/3, T]. Since we 
did not consider all potential scheduling periods, we only suggest 
scheduling office visits earlier and virtual patients later with their higher 
show-up probabilities. Scheduling the majority of office visits at the 
front results in a significant reduction in office patient waiting time. In 
addition, there is a wide interval between the last office and the first 
virtual visits due to the [2 T/3, T] time window constraint. This interval 
absorbs exactly office visits’ service deferral accumulated by service 
times uncertainty without significantly increasing idle time. The waiting 
time for virtual visits is also reduced. Thus, the total cost is minimized. 

From the above observations, we can conclude the following. Nearly 
in all the cases of integrated virtual and office appointment scheduling, 
the proposed multiserver time window allowance schedule has superior 
performance than traditional schedule without time windows in previ
ous research. The performances of Schedules 1 and 2 are not signifi
cantly affected by the show-up patterns of virtual and office patients. In 
most cases, Schedule 1 performs poorly, whereas Schedule 2 results in 
the best or close to the best results. The performance of Schedule 3 is 
much more sensitive to the show-up patterns of virtual and office visits. 
Schedule 3 performs the worst with an increasing show-up pattern of 
office visits. Schedule 3 performs nearly the worst when office visits’ 
show-up pattern is either first increasing then decreasing or first 
decreasing then increasing. However, when office patients’ show-up 
pattern is decreasing, Schedule 3 is the best or near-best decision. 
These provide managers with specified appointment period decision 
guidelines when scheduling hybrid office and virtual visits with different 
show-up patterns. We prefer to suggest to schedule virtual visits in the 
period [T/3, 2 T/3] under all show-up pattern combinations because of 
its robustness for best or near-best results. Scheduling virtual visits in the 
period [2 T/3, T] with a decreasing office visits’ show-up pattern is 
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recommended to achieve better system operational efficiency. 

5.3.3. Impact of the ratio of virtual visits 
We conduct experiments to investigate the impact of the ratio of 

virtual visits (RoV) on the time windows scheduling decisions and the 
overall cost. To generate the instances, we change the value of RoV from 
0.25 to 0.75, while the other parameters are kept fixed. Table 12 pre
sents the results for different ratio of virtual visits. When the RoV is not 
greater than a certain value (such as 0.5), the best schedule always ar
ranges virtual visits at [T/2, T], which is not sensitive to the patient 
ratio. As the RoV increases, the overall costs pertaining to both [0, T/2] 
and [T/2, T] time window schedules increase. When the RoV continues 
to increase until it exceeds a certain threshold (such as 0.5), the best 
scheduling decision has changed. The schedule without time window 
generates the lowest overall cost. From these results, we can provide the 
practitioners the following suggestions: the length and position of the 
time window adopted can be adjusted according to the RoV. The lowest 
cost can be obtained by scheduling virtual visits within the time window 
with appropriate length and position. When the RoV reaches a certain 
level, it is better to use the schedule without time window restrictions. 

5.3.4. Impact of cost weighting coefficients 
In this subsection, we analyze the impact of the cost weighting co

efficients. We vary the c values, where (co
w, ce

w, cz
k, and co

k) are the 
objective function coefficients of office patient waiting time, virtual 
patient waiting time, physicians’ idle time, and overtime, respectively. 
We test 16 sets of different values of c on an instance set. Without loss of 
generality, we consider a single server and 25 patients, with 40 % virtual 
and 60 % office visits (a common scenario in the Department of Endo
crine at Shanghai Sixth People’s Hospital). The time limit is set at T =

260. Other parameters are the same as in Section 5.1. We report the 
sensitivity results in Table 13, which clearly demonstrates the results 
between office patient waiting time wo, virtual patient waiting time we, 
server idle time ti, and overtime to with reference to c values. When only 
co

w is increased, both office patient and total waiting times decrease 
significantly. However, virtual patient waiting time and physician 
overtime increase. When only ce

w is increased, both office patient and 
total waiting times increase significantly. However, virtual patient 
waiting time and physician overtime present decreasing trends. When 
either co

w or ce
w changes, the server idle time stays approximately the 

same. Server idle time and overtime values decline as the cz
k and co

k 
values increase individually while fixing the remaining three parame
ters. In addition, the impact of cz

k and co
k on their respective performance 

measures is not as substantial as that of co
w and ce

w on the two types of 
patient waiting time. These results imply that minimizing the waiting 
time for one type of patient has no benefit on minimizing that for the 
other type of patient, meaning that office and virtual patient waiting 
times are conflicting measures. Moreover, the impact of co

w on office 
patient waiting time is much more apparent than that of ce

w on virtual 
patient waiting time, which leads to the total waiting time and the office 
patient waiting time changing in the same direction. In addition, the 
results demonstrate that the total waiting time of visits and the sum of 
server overtime and idle time to

i are changing in the opposite direction. 
The model assigns appointment times in wider time intervals to make 
the total patient waiting time shorter, which leads to an increase in the 
sum of overtime and idle time values. This result indicates a trade-off 
between total patient waiting time and the sum of server overtime and 
idle time. 

6. Conclusion 

In this study, we investigate the appointment scheduling problem of 
virtual service with proposing MTWAS to manage virtual visits to 
receive services at a specific period considering stochastic service time 
and time-dependent no-show. Our modelling approach addresses the 
challenges in modelling several aspects simultaneously, whereas previ
ous research focused only on parts of those factors. The problem jointly 
optimizes the decisions of assigning visits to multiple physicians and the 
patient appointment time. The objective is to minimize the sum of pa
tients’ waiting time, servers’ idle time, and overtime costs. To solve the 
problem, we formulate it as a stochastic mixed-integer program. Several 
acceleration measures are taken into the Benders decomposition such 
that a stabilized Benders decomposition algorithm with SAA approach is 
proposed to obtain an ε-optimal solution. Finally, the numerical results 
demonstrate that our proposed algorithm outperforms the solver Gur
obi. More computational studies are conducted to provide managers 
with managerial insights when scheduling multiple physicians for 
treating virtual and office visits in practice. In most cases of integrated 
virtual and office patients’ scheduling, the superiority of our proposed 
multiserver time window allowance schedule solutions are more 
prominent than previous solutions. First, compared with separate 
scheduling with several single-server models, it is suggested to apply a 
joint multiple servers’ system to schedule patients when there are sig
nificant differences among physicians for treating virtual and office 
patients. Second, when scheduling with hybrid office and virtual visits, 
under different show-up pattern combinations, determining the appro
priate specified appointment period for virtual visits will significantly 
affect system performance. 

Future work can be extended in several directions. First, a capacity 
allocation problem and appointment scheduling problem can be jointly 
optimized because decisions in both stages will affect each other. Sec
ond, more complicated patient behaviors or patient types can be 
investigated in our model, e.g. patient unpunctuality, cancellation, of
fice walk-in patients, and office to virtual revisits. Third, Internet hos
pitals have obvious advantages in reducing the risk of cross-infection in 
the COVID-19 epidemic era and have no transportation costs. Hence, the 
benefits brought by Internet hospitals can be considered in the problem. 
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Appendix A:. The supplementary of Benders decomposition 

The optimality cuts are derived to add to the master problem. Let fks
jp be the optimal value of dual variables corresponding to the constraints (3b) of 

SPs(x, a, ξ), and αs
ik and βs

k be the optimal value of dual variables corresponding to the constraints (3c) and (3d) of SPs(x, a, ξ). We formulate the 
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subproblem SPs(x, a, ξ) in its dual form as: 

max
∑

k∈K

∑

j<p∈I
f ks
jp

(
qs

j d
s
j − M

(
2 − xpk − xjk

)
− ap + aj

)
+
∑

k∈K

∑

i∈I
αs

ik[ai −
∑

j∈I,j∕=i

qs
j d

s
j xjk − M(1 − xik)] +

∑

k∈K
βs

k(
∑

i∈I
qs

i d
s
i xik − T) (A.1a)  

s.t. −
∑m

k=1

∑n

p=2
f ks
1p −

∑m

k=1
αs

1k ≤ co
wyo

1 + ce
wye

1 (A.1b)  

−
∑m

k=1

∑n

p=i+1
f ks
ip +

∑m

k=1

∑i− 1

j=1
f ks
ji −

∑m

k=1
αs

ik ≤ co
wyo

i + ce
wye

i , ∀i ∈ I, 1 < i < n (A.1c)  

∑m

k=1

∑n− 1

j=1
f ks
jn −

∑m

k=1
αs

nk ≤ co
wyo

n + ce
wye

n (A.1d)  

∑n

i=1
αs

ik − βs
k ≤ cz

k,∀k ∈ K (A.1e)  

βs
k ≤ co

k , ∀k ∈ K (A.1f)  

f ks
jp ≥ 0, ∀p > j ∈ I, k ∈ K (A.1 ​ g)  

αs
ik, βs

k ≥ 0,∀i ∈ I, k ∈ K (A.1 ​ h) 

By the objective function (A.1a) in the dual problem (A.1a)–(A.1h), we can derive the optimality cuts. We model the master problem of SMIP added 
the optimality cuts as the following formulation: 

min1/S
∑

s∈S
δs (A.2a)  

s.t. (2b)–(2b) (A.2b)  

δs ≥
∑

k∈K

∑

j<p∈I
f ks
jp

(
qs

j d
s
j − M

(
2 − xpk − xjk

)
− ap + aj

)
+
∑

k∈K

∑

i∈I
αs

ik[ai −
∑

j∈I,j∕=i

qs
j d

s
j xjk − M(1 − xik)+

∑

k∈K
βs

k(
∑

i∈I
qs

i d
s
i xik − T),∀s ∈ S (A.2c) 

where δs, ∀s ∈ S is continuous variable. Constraints (A.2c) are the optimality cuts. 
Finally, the steps of the Benders decomposition algorithm are presented as the following pseudocode:   

CBD algorithm for the proposed problem 

1: Initialization. Set UB = + ∞, LB = − ∞. Select a convergence tolerance parameter ε ≥ 0. 
2: Solve the master problem. Record the optimal solutions (x*, y*, a*, δ*, μq) and the optimal objective value zMP. Set LB =

zMP.  
3: Stochastic service time and time-dependent no-shows scenario generation. Sample S = 1000 i.i.d. realizations (qs

1, ds
1)

, ..., (qs
n , ds

n), s = 1, ..., S by given service time distribution and no-shows with mean μq.  
4: for each s ∈ [1, S] do 
5: Solve the subproblem SPs (3a)–(3f) with x*, y* , a* and record the optimal objective value zSP

s . 
6: Get the extreme point. 
7: Add optimality Benders cut (A.2c) to the master problem. 
8: end for 
9: Calculate δ = 1/S(

∑S
1zSP

s ). 
10: Set UB = min

{
UB, zMP +δ − δ*}. 

11: if UB − LB ≤ ε then 
12: Terminate. return x* , y*, a* as the optimal solution and UB as the optimal value. 
13: else 
14: Go to line 2. 
15: end if  

Appendix B:. Comparison results of MSAS and SSAS under homogeneous servers 

The MSAS and SSAS models have been analyzed regarding the total costs when every physician is homogeneous with the same office and virtual 
service time, unit overtime and idle time cost. We consider different number of servers and patients, with 40 % virtual and 60 % office patients as 
illustrated in Table B1. The time limit is set at T = (nroμd

ok + nreμd
ek)/m. The optimization results are summarized in Table B1. The results indicate that 

the MSAS model performs better in seven cases, while the performance of the MSAS model is worse in the other eight cases. 
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