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A B S T R A C T   

There is a lack of research on the flexible job shop scheduling problem (FJSP) considering limited fixture-pallet 
resources in multi-product mixed manufacturing workshops. However, field research in a leading engine 
manufacturer in China has revealed that fixture-pallet resources are a key factor limiting capacity breakthroughs 
although they play an auxiliary role in the production process. Thus, in this paper, we propose a methodology for 
the multi-resource constrained flexible job shop scheduling problem with fixture-pallet combinatorial optimi-
sation. First, a mixed integer programming model with machine-fixture-pallet constraints is constructed aiming 
to minimize makespan. Then, a novel genetic algorithm integrated with feasibility correction strategy and self- 
learning variable neighbourhood search (VNS) is proposed to address the complicated scheduling problem, 
where the feasibility correction strategy is designed to solve potential conflict between machine selection and 
fixture selection chromosomes and self-learning VNS is executed to further improve the optimisation capability. 
Moreover, the effectiveness and efficiency of proposed algorithm are demonstrated by computational experi-
ments with real data from cooperated engine manufacturing plant, which would provide convincing support for 
real production scheduling under complex scenarios.   

1. Introduction 

Smart factory, probably the most significant concept within Industry 
4.0, draws a blueprint with a fully connected manufacturing system, 
where preeminent cyber technology and physical technology are 
applied instead of human force (Cañas, Mula, Díaz-Madroñero, & 
Campuzano-Bolarín, 2021; Osterrieder, Budde, & Friedli, 2020). As a 
critical component of manufacturing system, scheduling involves 
determining the sequence of production operations, allocating re-
sources, and setting timelines for completion. To achieve the objective of 
minimizing costs and improving overall productivity, scheduling holds 
an urgent need for intelligent upgrades. 

With augmenting customer demand for personalization and intense 
market competition, the diversification of product types with different 
process routes and multiple possibilities of machine selection become 
the notable features of production mode in manufacturing industry. 
Scheduling with the characteristics above is defined as the flexible job 
shop scheduling problem (FJSP), which consists of two subproblems: 
machine selection and operation sequencing (Li et al., 2017). It is a 

combinatorial optimisation problem that seeks to determine an optimal 
schedule for a set of jobs with multiple operations to be processed on a 
set of machines. And there is a well-established methodological system 
for the study of typical FJSP. However, in real-world production sce-
narios, the influence of auxiliary resources on scheduling should not be 
underestimated, and representatives of such critical resources are fixture 
and pallet. 

Fixtures, normally held by pallets, play a pivotal role in the 
manufacturing process by serving as essential tools for fixating, posi-
tioning and supporting workpieces (Gothwal & Raj, 2017). The limited 
availability of fixture-pallet resources often acts as a bottleneck, 
restricting further improvement in production capacity, and can even 
result in unfavorable outcomes such as production stagnation or delay. 
Moreover, suboptimal fixture-pallet combinations can exacerbate the 
impact of this bottleneck. Considering there is rare research on this 
issue, studying FJSP with fixture-pallet constraints holds great signifi-
cance in the intelligent transformation of the manufacturing industry. 

In this paper, we focus on the multi-resource constrained flexible job 
shop scheduling problem with fixture-pallet combinatorial optimisation 
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(MRFJSP-FPCO). A mixed integer programming (MIP) model with 
machine-fixture-pallet constraints is constructed to minimize the 
maximal completion time of production tasks as well as provide an 
optimal strategy for fixture-pallet combination. To handle with the 
complexity of solving under large-scale scheduling scenarios, we design 
an improved genetic algorithm, in which a feasibility correction strategy 
targeting on fixture-pallet relationship and a self-learning variable 
neighbourhood search (VNS) are involved. And first-hand data from a 
leading Chinese engine manufacturer is employed to evaluate the per-
formance of the proposed algorithm, which demonstrates remarkable 
advantages of our approach. 

The remainder of this paper is organised as follows. Section 2 reviews 
previous studies on FJSP. Problem description and mathematical 
formulation are presented in Section 3. In Section 4, an advanced and 
innovative algorithm is proposed to solve the problem. And Section 5 
conducts the numerical experiments and analyses the corresponding 
results. Finally, Section 6 summarises the conclusions and prospects. 

2. Literature review 

As an extension of typical job shop scheduling problem (JSP), FJSP 
was first proposed in 1990 (Brucker & Schlie, 1990) and it has been 
proven to be a NP-hard problem (Fattahi, Saidi Mehrabad, & Jolai, 
2007). Over the past 33 years, many researchers have applied various 
methods and techniques to solve JFSP. And the optimisation algorithms 
for FJSP could be divided into two categories: exact optimisation 
methods and approximate methods (Zhang, Ding, Zou, Qin, & Fu, 2019). 

Representatives of exact optimisation algorithms are mathematical 
programming approach, branch and bound method (B&B), and Benders 
decomposition. Meng, Zhang, Ren, Zhang, and Lv (2020) formualted 
four mixed integer programming models which are sequence-based, 
position-based, time-indexed and adjacent sequence-based respectively 
and designed an efficient constraint programming model to solve the 
problem. Soto et al. (2020) presented a novel parallel branch and bound 
algorithm where shared-memory architectures were implemented to 
solve the multi-objective FJSP. Naderi and Roshanaei (2022) integrated 
Benders decomposition with constraint programming and demonstrated 
that its performance was better than other well-known methods. 
Although exact algorithms can theoretically lead to optimal solutions, 
research on approximate methods cannot be ignored, considering FJSP’s 
NP-hard nature and the large size of problems in reality. 

As computer technology and intelligent algorithms progress inces-
santly, various metaheuristics like particle swarm optimisation (PSO), 
genetic algorithms (GA), simulated annealing (SA) and even some ma-
chine learning tools like neural networks (NN) and reinforcement 
learning (RL) are utilized in FJSP. Pezzella, Morganti, and Ciaschetti 
(2008) designed a GA for FJSP involving various strategies for initiali-
zation, selection and reproduction, which had a profound influence for 
subsequent scholars. Li, Gong, and Lu (2022) focused on FJSP with fuzzy 
processing time to achieve a multi objective of minimizing the makespan 
and total workload, and proposed a self-adaptive evolutionary algorithm 
with decomposition, which proved to be more effective than other well- 
known algorithms. Ding and Gu (2020) designed an improved PSO al-
gorithm for FJSP, which was achieved by innovative encoding/decoding 
scheme, information communication between particles and enhance-
ment of machine selection rule. Ren et al. (2021) considered energy 
consumption in FJSP and presented an integrated heuristic algorithm 
combining PSO and GA to solve the established multi-objective problem. 
Fan, Shen, Gao, Zhang, and Zhang (2021) proposed a Jaya algorithm 
hybrid with tabu search (TS) to handle with FJSP and considered the 
multiple critical paths as the main bottleneck which lacked a formal 
discussion in previous literature. Hajibabaei and Behnamian (2021) 
considered unrelated parallel machines as well as sequence-dependent 
setup time in a multi-objective FJSP, where a TS algorithm was 
designed targeting on large-size instances. Defersha, Obimuyiwa, and 
Yimer (2022) introduced the assumption of machine tenders in FJSP and 

formulated a mathematical model for FJSP with setup operator con-
straints, which was solved by a SA algorithm. Chen, Yang, Li, and Wang 
(2020) addressed FJSP by a self-learning GA whose key parameters 
could be adjusted based on reinforcement learning method, which 
outperformed common approximate algortihsm with fixed pamaters. 
Müller, Müller, Kress, and Pesch (2022) trained a prediction model with 
the aid of decision trees and deep neural networks, which aimed to select 
most suitable constraint programming solvers for specific FJSP in-
stances. Lei et al. (2022) constructed an end-to-end deep reinforcement 
learning (DRL) framework to solve FJSP by automatically learn policies 
consisting of two sub-policies called operation policy and machine 
policy from a large number of instances. 

However, auxiliary resources are not supposed to be ignored in FJSP 
research as they are usually the key constraints to production sched-
uling. Common extra resources in FJSP include manpower, cutters, 
fixtures, pallets and so on. Gong, Chiong, Deng, and Gong (2020) 
introduced a mathematical model for FJSP with worker flexibility, 
incorporating a hybrid ABC algorithm with local search strategy, which 
effectively mitigated production costs and address manpower-related 
bottleneck issues. Fan et al. (2022) considered reconfigurable machine 
reconfigurations with auxiliary modules in FJSP and designed an 
improved GA, where a disjunctive graph and a modified k-insertion 
were applied to analyze the bottlenecks. Tian, Gao, Zhang, Chen, and 
Wang (2023) studied the impact of cutting-tool degradation in 
manufacturing process and formulated a FJSP model hybrid with tool 
life prediction as well as machining power prediction. Vallikavungal 
Devassia, Salazar-Aguilar, and Boyer (2018) got inspired by a real sit-
uation of a brewing company and proposed a FJSP with resource re-
covery constraints, which supposed that auxiliary resources required a 
recovery time between each batch. As for fixtures resources, Chan, 
Wong, and Chan (2006) considered fixture and tool constraints in FJSP, 
but every operation had only one specific fixture in their hypothesis. 
Thörnblad, Strömberg, Patriksson, and Almgren (2015) focused on a 
real-life production scenario in Sweden and formulated a FJSP model 
with fixture availability as well as preventive maintenance re-
quirements, which was solved by a fast iterative approach with great 
advantage in computation time. Wu, Peng, Xiao, and Wu (2021) pre-
sented research on FJSP with the loading and unloading time of fixtures, 
where a multi-objective mathematical model was formulated and an 
improved non-dominated sorting genetic algorithm II (NSGA- II) with 
setup-time reduction strategy was proposed to solve the problem. 

The brief literature above shows that many studies around FJSP have 
noted the importance of ancillary resources in production scheduling. 
However, limited works have focused on fixtures, especially as flexible 
resources. Besides, there is no similar research like ours to solve FJSP 
and optimize fixture-pallet combination solutions at the same time. 
Therefore, it is necessary and significant to describe MRFJSP-FPCO in a 
mathematical form and develop an efficient and superior algorithm to 
solve it. 

3. Problem formulation 

3.1. Problem description 

The proposed MRFJSP-FPCO is defined as follows. The product set, 
machine set, fixture set, and pallet set are noted as I, M, F, and P 
respectively. Ji refers to the process route of product i(i ∈ I) and Oi,j 

represents the j th operation of product i(i ∈ I,Oi,j ∈ Ji). Every machine 
m(m ∈ M) is equipped with a pallet station p(p ∈ P) to hold necessary 
fixtures, which are used to support products. Matching of fixtures and 
pallets is done before production starts, which indicates that every 
fixture will stay at the same pallet till all tasks are completed. Prior in-
formation about all process routes Ji(i ∈ I) is fixed and the 
manufacturing will be executed in strict accordance with it. Besides, 
every operation Oi,j has an eligible machine set M(Oi,j) and an eligible 
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fixture set F(Oi,j), and the processing time might vary depending on 
which machine is chosen to operate. MRFJSP-FPCO is concerned with 
arranging appropriate machine and fixture for every operation, 
sequencing all operations, and providing a reasonable fixture-pallet 
matching plan to minimize the makespan, while meeting the various 
resources constraints. Assumptions below should also be satisfied in 
MRFJSP-FPCO:  

(1) Every product i(i ∈ I) can be processed from time 0.  
(2) The processing is supposed to be continuous, break-down is not 

allowed in principle once started. 
(3) Every machine m(m ∈ M) is only available for one single opera-

tion Oi,j of one product at the same time.  
(4) Every fixture f(f ∈ F) can hold at most one single operation Oi,j of 

product at the same time.  
(5) Setup time of machines and fixtures is ignored during the process.  
(6) Fixture-pallet resources can satisfy the production demand 

although they are sparse, which means that extreme cases where 
operations executed on different machines rely on a single 
selectable fixture are not considered. 

To provide a more intuitive comprehension, an example of three 
products’ process information is shown in Table 1. There are four op-
erations for product 1 and three operations for both product 2 and 
product 3. It is clear to find that one single operation could have several 
eligible machines and fixtures, which may require different processing 
time. For instance, the first operation of product 1O1,1 could be assigned 
to either M1 or M2 with processing time 12min and 10min respectively. 

Without fixture-pallet constraints, a typical FJSP only focuses on 
operation sequencing and machine selection, and several feasible 
scheduling schemes are shown in Fig. 1(a), (b) and (c). While in 
MRFJSP-FPCO, limited fixture resources and multi-possible combina-
torial approaches suddenly arouse the complexity of scheduling. As 
shown in Fig. 1(d), O1,1, O1,2, and O2,1 must be done in M1 as F2 is not 
available and F1 is held by P1 of M1. However, similar condition still 
exists in Fig. 1(e) because F1 and F2 are put in P1 of M1 although both 
are available, which proves the necessity of fixture-pallet combinatorial 
optimisation. And Fig. 1(f) presents a good example of scheduling with 
an appropriate fixture arrangement. It is worth noting that the makespan 
in FJSP-FPCO is longer than typical FJSP in this example, which is 
reasonable because fixture resource F3 is a bottleneck requirement for 
both product 1 and product 2. 

3.2. Mathematical formulation 

To provide an optimal scheduling plan as well as an ideal fixture- 
pallet combination strategy under complicated trio-resource con-
straints, we formulate a mixed integer programming model with the 
target of minimizing the makespan based on the assumptions above. And 
the notation involved in the model is defined in Table 2. The pallet’s 
entity is not necessary to add in this model, given that each machine is 

equipped with a pallet station. 
The MIP model of MRFJSP-FPCO is shown below. 

minCmax  

s.t.

∑

f∈Fi,j

∑

m∈Mi,j

Xi,j,m,f = 1, ∀i ∈ I,∀j ∈ Ji (1)  

Um,f ≥ 1 − L⋅
(
1 − Xi,j,m,f

)
,∀i ∈ I, ∀j ∈ Ji,∀m ∈ Mi,j,∀f ∈ Fi,j (2)  

∑

m′∈Mi,j\m

Um′,f ≤ 0+L⋅
(
1 − Xi,j,m,f

)
,∀i ∈ I,∀j ∈ Ji, ∀m ∈ Mi,j, ∀f ∈ Fi,j (3)  

Xi,j,m,f ≤ 0+ L⋅Um,f ,∀i ∈ I,∀j ∈ Ji, ∀m ∈ Mi,j,∀f ∈ Fi,j (4)  

Si,j +
∑

m∈Mi,j

(

pi,j,m⋅
∑

f∈Fi,j
Xi,j,m,f

)

≤ Ci,j, ∀i ∈ I, ∀j ∈ Ji (5)  

Si,j+1 ≥ Ci,j,∀i ∈ I,∀j ∈ Ji (6)  

Si,j ≥ Ci′,j′ − L⋅

(

2 −
∑

f∈Fi,j
Xi,j,m,f −

∑

f∈F
i′,j′

Xi′,j′,m,f

)

− L⋅Yi,j,i′,j′,m,∀i ∈ I,∀j

∈ Ji, ∀i′∈ I\i,∀j′ ∈ Ji′,∀m ∈ Mi,j ∩ Mi′,j′

(7)  

Si′,j′ ≥ Ci,j − L⋅

(

2 −
∑

f∈Fi,j
Xi,j,m,f −

∑

f∈F
i′,j′

Xi′,j′,m,f

)

− L⋅
(
1 − Yi,j,i′,j′,m

)
,∀i

∈ I,∀j ∈ Ji, ∀i′∈ I\i,∀j′ ∈ Ji′,∀m ∈ Mi,j ∩ Mi′,j′

(8)  

Si,j ≥ Ci′,j′ − L⋅

(

2 −
∑

m∈Mi,j
Xi,j,m,f −

∑

m∈M
i′,j′

Xi′,j′,m,f

)

− L⋅Zi,j,i′,j′,f ,∀i ∈ I, ∀j

∈ Ji, ∀i′∈ I\i,∀j′ ∈ Ji′,∀f ∈ Fi,j ∩ Fi′,j′

(9)  

Si′,j′ ≥ Ci,j − L⋅

(

2 −
∑

m∈Mi,j
Xi,j,m,f −

∑

m∈M
i′,j′

Xi′,j′,m,f

)

− L⋅(1 − Zi,j,i′,j′,f ), ∀i

∈ I,∀j ∈ Ji, ∀i′ ∈ I\i,∀j′ ∈ Ji′,∀f ∈ Fi,j ∩ Fi′,j′

(10)  

Yi,j,i′,j′,m ≤
∑

f∈Fi,j
Xi,j,m,f ,∀i ∈ I,∀j ∈ Ji,∀m ∈ Mi,j (11)  

Yi,j,i′,j′,m ≤
∑

f∈F
i′,j′

Xi′,j′,m,f ,∀i′ ∈ I, ∀j′ ∈ Ji′,∀m ∈ Mi′,j′ (12)  

Table 1 
Schematic table of products’ process information.  

Product Operation Machine Set Fixture Set 

M1 M2 M3 M4 F1 F2 F3 F4 F5 

product1 O1,1 12min 10min — — ✓ ✓ — — — 
O1,2 5min 5min — — ✓ ✓ — — — 
O1,3 — — 8min 8min — — ✓ — — 
O1,4 — — 10min 11min — — ✓ — — 

product2 O2,1 15min 15min — — ✓ ✓ — — — 
O2,2 — — 8min 9min — — ✓ — — 
O2,3 — — 12min 10min — — ✓ — — 

product3 O3,1 6min — 6min — — — — ✓ — 
O3,2 8min — 8min — — — — ✓ — 
O3,3 — 10min — 9min — — — — ✓  
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Zi,j,i′,j′,f ≤
∑

m∈Mi,j
Xi,j,m,f ,∀i ∈ I,∀j ∈ Ji, ∀f ∈ Fi,j (13)  

Zi,j,i′,j′,f ≤
∑

m∈M
i′,j′

Xi′,j′,m,f , ∀i′ ∈ I,∀j′ ∈ Ji′, ∀f ∈ Fi′,j′ (14)  

Cmax ≥ Ci,j, ∀i ∈ I, ∀j ∈ Ji (15)  

Xi,j,m,f ∈ {0, 1}, ∀i ∈ I, ∀j ∈ Ji,∀m ∈ Mi,j,∀f ∈ Fi,j (16)  

Yi,j,i′,j′,m, Zi,j,i′,j′,f ∈ {0, 1}, ∀i ∈ I,∀j ∈ Ji,∀i′∈ I\i, ∀j′ ∈ Ji′,∀m ∈ Mi,j ∩ Mi′,j′,∀f

∈ Fi,j ∩ Fi′,j′

(17)  

Um,f ∈ {0, 1},∀m ∈ M,∀f ∈ F (18)  

Si,j,Ci,j,Cmax ≥ 0,∀i ∈ I,∀j ∈ Ji (19) 

The objective function aims to minimize the makespan. Constraints 
(1) guarantee that every operation of every product could be processed 
by only one machine and positioned by only one fixture. Constraints (2), 
(3) and (4) ensure that the matching relation between fixture and pallet 
cannot change during the manufacturing once they are fixed. The sum of 
start time and processing time is no more than completion time for each 
operation is realized by constraints (5). And constraints (6) describes the 
strict precedence of process route for every product. Otherwise, con-
straints (7) and constraints (8) make sure that one machine could be 
occupied with at most one operation at the same time, similarly, con-
straints (9) and constraints (10) ensure that one fixture could be utilized 
with at most one operation at the same time. Constraints (11), (12), (13) 
and (14) describe the mutual relations among decision variables Yi,j,i′,j′,m,

Zi,j,i′,j′,f ,Xi,j,m,f and Xi′,j′,m,f and constraints (15) limit the makespan no less 
than any completion time of all operations. In the end, constraints (16), 
(17), (18) and (19) determine the basic variable types of all decision 

Fig. 1. Gannt charts under different scenarios.  

Table 2 
Notation of proposed MIP model.  

Notation Definition 

I Product set,i = 1,2,⋯, |I|
M Machine set,m = 1,2,⋯, |M|

F Fixture set,f = 1,2,⋯, |F|
Ji Operation set of product i, i ∈ I 
Oi,j j th operation of product i, i ∈ I, j ∈ Ji 

Mi,j Eligible machine set of product i’s j th operation,i ∈ I, j ∈ Ji 

Fi,j Eligible fixture set of product i’s j th operation,i ∈ I, j ∈ Ji 

pti,j,m Processing time of product i’s j th operation on machine m, i ∈ I, j ∈ Ji,

m ∈ Mi,j 

L A large number,L > 0 
Si,j Continuous decision variable: 

Start time of product i’s j th operation,i ∈ I, j ∈ Ji 

Ci,j Continuous decision variable: 
Completion time of product i’s j th operation,i ∈ I, j ∈ Ji 

Cmax Continuous decision variable: 
Makespan,Cmax > 0 

Xi,j,m,f Binary decision variable: 
It is equal to 1 if j th operation of product i is assigned to machine m and 
positioned by fixture f； 
otherwise, it is equal to 0. i ∈ I, j ∈ Ji,m ∈ Mi,j , f ∈ Fi,j, 

Yi,j,i′,j′,m Binary decision variable: 
It is equal to 1 if j th operation of product i precedes j′ th operation of 
product i′ on machine m； 
otherwise, it is equal to 0.i ∈ I, j ∈ Ji, i′∈ I\i, j′ ∈ Ji′ ,m ∈ Mij ∩ Mi′j′ 

Zi,j,i′,j′,f Binary decision variable: 
It is equal to 1 if j th operation of product i precedes j′ th operation of 
product i′ fixated by fixture f； 
otherwise, it is equal to 0.i ∈ I, j ∈ Ji, i′∈ I\i, j′ ∈ Ji′ , f ∈ Fij ∩ Fi′j′ 

Um,f Binary decision variable: 
It is equal to 1 if fixture f is put in the pallet station of machine m； 
otherwise, it is equal to 0. m ∈ M, f ∈ F,  
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variables. 

4. Proposed methodology 

4.1. Framework of proposed algorithm 

In MRFJSP-FPCO, varying fixtures are required for different opera-
tions along the process routes, and even a single operation may have 
multiple eligible fixtures. Additionally, uncertain fixture-pallet combi-
nations have a huge effect on the generation of scheduling plans. 
Evidently, FJSP involving fixture-pallet constraint is significantly more 
intricate to address compared with the conventional FJSP, which is 
already difficult to be solved by an exact algorithm in polynomial time. 

Therefore, we propose an improved genetic algorithm hybrid with 
feasibility correction strategy and self-learning variable neighbourhood 
search (IGA-FCSSVNS). As machine-fixture-pallet resources are all 
involved in the problem, a three-string chromosome structure is 
designed to encode. An accompanying feasibility correction strategy is 
designed to solve potential conflict of fixture-pallet shifting in the 
initialization and evolution of the population. In the metaphase, we 
introduce a self-learning VNS procedure, which gathers useful infor-
mation from the elite pool and constructs a search strategy repository, 
leading the elite solutions to further optimize in the local search. The 
framework of proposed IGA-FCSSVSN is shown in Fig. 2. 

4.2. Chromosome encoding and decoding 

With extra fixture-pallet constraint, TRFJSP-FPCO could be divided 
into three subproblems: operation sequencing, machine selection and 
fixture selection. And we design a three-string chromosome encoding 
method, as shown in Fig. 3, which are noted as OS, MS, and FS 
respectively corresponding to the three subproblems. It is not necessary 
to introduce a fourth string to represent pallet information because the 
fixture-pallet relation could be obtained directly from MS and FS 
considering that every machine has an exclusive pallet station. 

The length of every string is equal to the total amount of operations 
of all products and every gene position filled with a number represents a 
specific operation with extra information. In OS, number means product 

index and the order it appears determines which operation this gene is. 
For example, the fifth gene of OS in Fig. 3 refers to O3,1 because it is 
encoded as 3 for the first time. While in MS and FS, the operation every 
gene stands for is arranged in order of operation sequence within 
product index. Besides, number represents machine index and fixture 
index in MS and FS. For instance, the first gene of MS and FS in Fig. 3 
contains the following information: first operation of first product O1,1 is 
processed in machine M2 and positioned by fixture F1. 

The decoding procedure of MRFJSP-FPCO is equivalent to that of 
typical FJSP because the fixture-pallet combination is fixed, which has 
no influence on decoding. Similar with the process in previous research 
(Demir & İşleyen, 2014; Li & Gao, 2016), decoding is achieved by 
iterating from left to right to find the corresponding operation in OS as 
well as obtaining the allocated machine in MS and fixture in FS. And the 
processing time of each operation is also determined by current OS and 
MS gene. Fig. 4 shows an example of decoding mechanism. 

4.3. Feasibility correction strategy 

In three-string chromosome, the initialization and evolution of MS 
and FS are independent, which may arouse conflict against the 
assumption that fixture-pallet relationship should not be changed in the 
manufacturing. An example is given in Fig. 5 to strengthen compre-
hension. MS and FS imply that machine M2 and machine M1 are 
responsible for O2,1 and O3,1 respectively. However, both O2,1 and O3,1 
require fixture F3 to hold, which is contrary to the preconditions of 
MRFJSP-FPCO. Consequently, a feasibility correction strategy is offered 
to solve this dilemma. 

Assuming that the operation set where fixture F is required in string 
FS is defined as O F, O F = {⋯, Oi,j, ⋯}, and the machine set corre-
sponding to operations in O F is defined as MO F , MO F = {⋯, MF , ⋯}, 
which is easy to obtain from string MS. For instance, O F2 = {O1,2,O2,2}

and MO F2
= {M3} in Fig. 5. In O F, the operation set where operations 

have common optional machine is defined as O COM, O COM = {⋯, Ok,l,

⋯}. For example, O COM = {O1,2,O1,3,O2,2} if O1,2, O1,3 and O2,2 can be 
processed by the same machine MCOM. Besides, the operation set where 
operations have only one optional fixture F is defined as O Fonly,O Fonly =

{⋯,Om,n,⋯}. The strict definition of O COM and O Fonly is: 

Fig. 2. Framework of IGA-FCSSVNS.  
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∀Oi,j,Ok,l ∈ O COM ,Oi,j ∕= Ok,l,Mi,j ∩ Mk,l ∕= ∅;

∀Oi,j ∈ O Fonly,Fi,j = {F}

O F, O COM, O Fonly, and MO F have the following properties: 

Property1 : Feasiblitycorrectionisnotnecessaryif |MO F | = 1.

Property2 : O COM ⊆ O F, O Fonly ⊆ O F.

Property3 : if
⃒
⃒O Fonly

⃒
⃒ > 1,O Fonly ⊆ O COM .

Property4 : if O COM = ∅,
⃒
⃒O Fonly

⃒
⃒ ≤ 1.

Based on the properties above, the feasibility correction algorithm is 
shown below. 

Step 1: for every fixture F appeared in chromosome FS, judge if 
|MO F | = 1. If yes, algorithm ends; else, move to step 2. 

Step 2: judge if O COM = ∅. If yes, move to step3; else, calculate 
|O Fonly|: if 

⃒
⃒O Fonly

⃒
⃒ ≥ 1, move to step 4; else, move to step5. 

Step 3: for operation who holds the least optional fixtures in O F, 
corresponding MS and FS genes stay the same; for other operations in 
O F, MS gene doesn’t need to change while FS gene should be modified 
based on its eligible fixture set. 

Step 4: operations in O Fonly keep the original FS gene, and change MS 
gene into the common optional machine mFonly; for other operations, if 
mFonly is not included in eligible machine set, MS gene stays unchanged 
and FS gene should be substituted from the eligible fixture set; else, 
correct MS gene into mFonly. 

Step 5: operations in O COM keep the original FS gene, and change MS 
gene into the common optional machine mCOM; for other operations, if 
mCOM is not included in eligible machine set, MS gene stays unchanged 
and FS gene should be substituted from the eligible fixture set; else, 
correct MS gene into mCOm. 

In conclusion, the feasibility correction is designed for three different 
scenarios determined by |MO F |, O COM, and |O Fonly|. As shown in Fig. 6, 
the restoration details are presented in a specific example. 

4.4. Population initialization 

The convergence speed and algorithm accuracy of proposed IGA- 
FCSSVNS can be vitally impacted by the quality of initial chromo-
somes. In order to achieve effective optimisation, the initial population 
must serve two purposes. Firstly, it should encompass a broad coverage 
of the solution space, allowing for optimisation in all directions. Sec-
ondly, this population should also include high-quality or near-optimal 
solutions, potentially accelerating the convergence process. 

Therefore, a combination of random generation and multi heuristic 
rules is applied in the initialization. Stochastically generated solutions 
make up 75 % of the original population, which strengthen the variety of 
community. And the rest is engendered by global search (GS) rule (Singh 
& Mahapatra, 2016), shortest processing time (SPT) rule (Hamzadayi & 
Yildiz, 2017), and most total work remaining (MTWR) rule (Dominic, 
Kaliyamoorthy, & Kumar, 2004) with a percentage distribution of 23 %, 
1 % and 1 % respectively. Feasibility correction strategy shown in sec-
tion 4.3. is already required at this stage. 

Fig. 3. Three-string chromosome encoding example.  

Fig. 4. Three-string chromosome decoding example.  

Fig. 5. Conflict example of MS and FS.  
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4.5. Selection and reproduction 

Similar with most metaheuristic algorithms, iterative optimisation is 
mainly achieved by selection, crossover, and mutation. The fitness 
whose value is the reciprocal of makespan after decoding is supposed to 
be calculated and evaluated for every individual. And solutions with 
bigger fitness value will be stored in the elite pool. After that, current 
population as the parent will take a roulette wheel strategy (Teekeng & 
Thammano, 2012) to select solutions and the selected ones will operate 
the crossover and mutation with a certain probability to generate 
offspring, which become the new parent. The process is repeated until 
the maximum number of iterations is reached. 

Precedence preservative crossover operator (Bierwirth & Mattfeld, 

1999) and multi-times swap mutation operator (Tian et al., 2022) are 
applied for string OS. While string MS chooses the multi-point crossover 
operator (Zhang, Hu, Sun, & Zhang, 2020) and string FS takes the order 
crossover operator (Zhang, Gao, & Shi, 2011), and both of them utilize 
random mutation operator (Mahmudy, Marian, & Luong, 2013). 

4.6. Self-learning VNS 

In the mid-to-late stage of population iteration, a self-learning VNS 
strategy is introduced to further improve the solution quality and 
enhance the optimisation capacity of algorithm, and the iteration when 
it starts is noted as IVNS Start in this work. As an effective local search 
method, VNS has been proved to be quite useful in existing research 

Fig. 6. Schematic diagram of feasibility correction.  
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work (Lei & Guo, 2014). On this basis, SVNS constructs a search re-
pository of three neighbourhood structures from the elite solution pool, 
and iteratively implements VNS strategy preferences autonomously 
through continuous learning, feedback and updating to optimize the 
elite individuals. 

4.6.1. Neighbourhood structure 
Three neighbourhood structures are designed and implemented in 

IGA-FCSSVNS.  

• VNS1: VNS for string MS and string FS 

Select k, k ∈ [1, |MS|] gene positions randomly from MS, substitute 
original machine by machine with the minimum processing time for the 
current operation. Afterwards, execute the feasibility correction strategy 
for MS and FS.  

• VNS2: VNS for string OS 

Select k, k ∈ [1, |OS|] gene positions from string OS and put the cor-
responding operations in an inverse order.  

• VNS3: VNS for string OS 

Select two products i, i ∈ I and j, j ∕= i, j ∈ I randomly and put the 
product in prior order if it has a smaller total operations number. 

The schematic diagrams of VNS1, VNS2, and VNS3 are shown in 
Fig. 7. 

4.6.2. Search strategy repository 
Search strategy repository is established with the aid of success and 

failure knowledge matrixes filled with knowledge from previous VNS 
iterations, which records the effect on elite solutions of VNS1, VNS2 and 
VNS3 independently. General form of elements in the success knowledge 
matrix is nS

ij, i ∈ {1,2,⋯,m}, j ∈ {1, 2, 3}, which represents how many 
times structure VNS j improved the elite solution i in the current VNS 
iteration. Similarly, nf

ij, i ∈ {1,2,⋯,m}, j ∈ {1,2, 3} in the failure 
knowledge matrix refers to the total times that structure VNS j failed to 
ameliorate the elite solution i in the current VNS iteration. And the 
following relationship holds: 

Fig. 7. Schematic diagrams of three neighbourhood structures.  
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∑3

j=1

(
ns

ij + nf
ij

)
= ITERVNS, ∀i ∈ {1, 2,⋯,m} (20) 

In equation (20), ITERVNS refers to the number of VNS performed in 
one iteration of IGA-FCSSVNS (Fig. 8). 

4.6.3. Local search based on self-learning VNS 
When VNS is first executed in the population, three VNS structures 

are selected randomly to function on the elite solution during the early 
stages, whose results are gathered to fill in the knowledge matrixes. 
After a certain number of iterations, the algorithm reaches the iteration 
IRandom, and the selection of VNS starts to be based on the statistical 
probability knowledge extracted from the repository. Furthermore, the 
effects are also fed back to the repository to ensure that dynamically 
updated knowledge base always provides the most reliable policy rec-
ommendations. The detailed procedure of self-learning VNS algorithm is 
shown below. 

Step 1: parameter initialization. S*
c represents the best elite solution 

of the current generation i, iVNS refers to the time of executed VNS in 
current generation i and ITERVNS is the same meaning as in equation 
(20). Initialize the ith row of knowledge matrixes by 0 and set iVNS to be 1. 

Step 2: judge if iVNS > ITERVNS. If yes, output the latest best solution 
S*

c and the process ends; else, continue. 
Step 3: judge if i ≤ IRandom. If yes, VNS in this iteration will be done by 

selecting randomly from VNSj, j ∈ {1, 2, 3}. Otherwise, a self-learning 
VNS draft will be done with respect to equations (21), (22), and (23). 

Step 4: perform VNS based on the chosen structure VNSj,j ∈ {1,2,3}, 
obtain a new solution S′. 

Step 5: if fitness(S′) > fitness(S*
c), S*

c = S′, ns
ij = ns

ij + 1; else, S*
c stays 

the same and nf
ij = nf

ij + 1. 
Step 6: update P j, j ∈ {1,2, 3} in equation (23) based on the latest 

repository, iVNS = iVNS + 1, move to step 2. 

VNS = Random(VNS1,VNS2,VNS3|P 1,P 2,P 3) (21)  

Pj =

∑i
k=1ns

kj
∑i

k=1ns
kj +

∑i
k=1nf

kj

, j ∈ {1, 2, 3} (22)  

P j =
Pj

∑3
n=1Pn

, j ∈ {1, 2, 3} (23) 

The mechanism of the procedure above is shown in Fig. 9. 

5. Numerical experiments 

To verify the correctness of MIP model formulated in section 3.2, we 
chose CPLEX, a high-powered mathematical programming solver 
commonly used in academia and industry, solving the model of MRFJSP- 
FPCO and comparing the results with that of IGA-FCSSVNS. Besides, two 
additional sets of algorithms were designed as control groups to 

demonstrate the superiority of the proposed feasibility correction 
strategy and self-learning VNS mechanism. Every test example was 
repeated 5 times given the stochastic attribute of metaheuristic algo-
rithms and all experiments in this research were coded in Python3.8 and 
conducted on a personal computer configured with an AMD Ryzen 7 
4800HS CPU @ 2.90 GHz + 16 GB RAM. 

5.1. Case introduction 

We investigated the current situation of scheduling in a leading en-
gine manufacturing industry in northern China and found that fixture- 
pallet resources had become the most prominent constraints in the 
production planning process of the new product trial center of the 
company. Different products may require various kinds of fixtures, 
which could be met in different pallets of corresponding machines, as 
shown in Fig. 10. Therefore, we utilized first-hand data from this 
workshop as the basis for generating various scales of test cases covering 
process routes of 15 different kinds of products. There are 107 opera-
tions in total within all categories, and every product route consists of 5 
to 10 operations, where 25 machines and 61 fixtures are required during 
the whole process. 

The partition of test cases is based on the scale of the production 
system, which encompasses the number of product types, products, 
machines, and fixtures. Three distinct categories include small, medium, 
and large scale, whose detailed data composition is shown in Table 3. 
For instance, the small-scale case includes 5 to 10 pieces of products 
belonging to 5 categories, where 16 machines and 25 fixtures are suf-
ficient and available for scheduling. 

Furthermore, every category is composed of several different sub-
cases, which are named in the format as P − M − F, where P, M, and F 
refer to the total volume of production, total amount of machines and 
total number of fixtures respectively. And every subcase also includes 
various examples with different order information. For instance, subcase 
5 − 16 − 25 represents that there are 5 products in this test subcase with 
16 machines and 25 fixtures to choose. However, 5 products may refer to 
2 pieces of product 1, 2 pieces of product 2 and 1 piece of product 3 
(example 1) or 1 piece from product 1 to product 5 respectively 
(example 2). In our experiments, two or three examples are designed in 
every subcase to test the applicability of proposed algorithm under 
different scenarios. 

5.2. Parameter settings 

We set the time limit to 3600 s, 14400 s, and 14400 s for small, 
medium, and large-scale cases respectively in CPLEX solver. If CPLEX is 
unable to find the theoretical global optimum within time limit, the 
current best solution is used as the result. 

As mentioned above, two extra groups of algorithms are tested in 
comparison with IGA-FCSSVNS. The first is the classical genetic algo-
rithm (GA) with penalty in fitness function to promote the legalization of 
MS and FS wherever possible, which aims to demonstrates the 

Fig. 8. Schematic diagram of search strategy repository.  
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effectiveness of feasibility correction strategy in our work. On this basis, 
the second is the genetic algorithm hybrid with feasibility correction 
strategy (GA-FCS), which further proves the advantage of our self- 
learning VNS method. Like Pezzella et al. (2008) and Fan et al. 
(2022), we conducted experiments with various values for the key pa-
rameters and introduced an adaptive mechanism characterized by lin-
early decreasing crossover and mutation ratios. The selected parameter 
values are shown in Table 4. 

5.3. Performance analysis 

Following the parameter settings in section 5.2, we tested 18 groups 
of examples under 8 subcases with the comparison among CPLEX, GA, 
GA-FCS and IGA-FCSSVNS. The experimental results are shown in 

Fig. 9. Structure of self-learning VNS algorithm.  

Fig. 10. Fixture-pallet resources in engine manufacturing workshop.  

Table 3 
Classification of test cases.  

Case 
classification 

Product 
type 

Production 
volume 

Machine 
number 

Fixture 
number 

Small-scale 5 5–10 16 25 
Medium-scale 5–10 30–40 16–20 25–52 
Large-scale 10–15 50–60 20–25 52–61  

Table 4 
Parameter settings.  

Notation Meaning Value 

population Population scale in the algorithm. 300 
totaliteration Total iteration times in the algorithm. 150 
PcMAX Crossover probability in the beginning of the iteration 

process as it is designed to be linearly decreasing. 
0.7 

PcMIN Crossover probability in the end of the iteration process. 0.5 
PmMAX Mutation probability in the beginning of the iteration 

process as it is designed to be linearly decreasing. 
0.35 

PmMIN Mutation probability in the end of iteration process. 0.2 
IVNS Start Iteration number when the self-learning VNS begins. 80 
IRandom Upper bound of iteration when VNS is chosen randomly. 110 
ITERVNS Total amount of VNS performed in one iteration. 30  
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Table 5, where Opti, i ∈ {2,3,4} refers to the makespan (in minutes) 
recorded in repeated experiments for every test example, Opti, i ∈ {1,2,
3, 4} represents the mean value of optimal solutions (in minutes), and 
tCPU stands for the average computation time (in seconds). 

We calculate the following evaluation indicators based on data in 
Table 5. Q1, Q2, and Q3 are introduced to measure the relative deviation 
of solutions obtained by different methods, which are defined in equa-
tions (24). And it is evident that a negative Q value indicates that pro-
posed IGA-FCSSVNS performs better than method in comparison. The 
detailed values of indicators are shown in Table 6. 

Qi =
Opt4 − Opti

Opti
× 100%, i ∈ {1, 2, 3} (24) 

In subcase 5 − 16 − 25, both CPLEX and IGA-FCSSVNS can find the 
global optimal solution of example 1 and example 2 in a short time, 
verifying the correctness of proposed MIP model, but GA and GA-FCS 

can only obtain the average optimal solution within 4.18 % and 1.52 
% relative deviation from the global optimal solution. In subcase 
10 − 16 − 25, CPLEX fails to find the global optimal solution within 7200 
s, while IGA-FCSSVNS achieves an approximate optimal solution no 
more than 1.44 % different from CPLEX solution within 450 s, which 
also outperforms the other two. 

The advantage of IGA-FCSSVNS begins to emerge as the test scale 
expands. From subcase 30 − 20 − 52 to subcase 60 − 25 − 61, CPLEX 
could not obtain theoretical optimal solution within 14,400 s. However, 
IGA-FCSSVNS outperforms CPLEX in all examples, where Q1 can even 
reach − 24.56 % and –32.34 % in example 2 of subcase 30 − 20 − 52 and 
subcase 60 − 25 − 61. In contrast, GA-FCS obtains a better solution than 
CPLEX in certain examples, while in other cases, it exhibits inferior 
performance. And GA always provides the worst result in medium and 
large-scale cases. 

Table 5 and Table 6 show evidently that GA method always provides 
the worst solution in all kinds of cases, especially in medium and large- 
scale cases, where Q2 is even as high as − 30 % to − 50 %. This phe-
nomenon is reasonable as the penalty strategy in GA method can only 
passively punish infeasible MS-FS strings, not actively promote correc-
tion of chromosome. Comparing GA and GA-FCS individually, we can 
find that Q3 is always bigger than Q2 although GA-FCS is not as good as 
GA-FCSVNS. And this advantage becomes more and more obvious as the 
size of test case increases, which demonstrates the effectiveness of 
feasibility correction strategy. Besides, iteration curves achieved by 
CPLEX, GA, GA-FCS and IGA-FCSSVNS of representative examples are 
shown in Fig. 11 to observe the performances of algorithms in iteration 
process. GA method always converge to an unsatisfactory solution at an 
early stage while GA-FCS method converges during the mid-term with 
an acceptable solution, which further improves the value of feasibility 
correction. 

Given the large gap between GA and other methods, iterations curves 
without GA are redrawn as shown in Fig. 12, which aims to provide a 
better view of the local features of GA-FCS and IGA-FCSSVNS. Consistent 
with information reflected in Table 6, IGA-FCSSVNS and CPLEX both 
obtain the global optimal solution in small-scale cases (except for the 
subcase 10 − 16 − 25); in medium and large-scale cases, IGA-FCSSVNS is 
far superior to CPLEX. Most importantly, green curve (IGA-FCSSVNS) 
shows an evident downward trend compared with the blue one (GA- 
FCS) after the introduction of self-learning VNS mechanism starting 
from the 80th generation, and eventually obtains a better solution than 
any other method. This characteristic reveals the local breakthrough 

Table 5 
Experiment results.  

Scale Subcase Example CPLEX GA GA-FCS IGA-FCSSVNS 

tCPU Opt1 tCPU Opt2 Opt2 tCPU Opt3 Opt3 tCPU Opt4 Opt4 

Small 5–16-25 1  0.28 218  111.00 226  232.20  195.60 219  219.00  191.20 218  218.00 
2  1.59 234  113.20 239  244.20  137.00 236  237.60  124.00 234  234.00 
3  18.17 284  127.60 302  313.80  144.00 289  293.20  148.00 285  287.20 

10–16-25 1  7200.00 277  259.80 344  356.00  245.20 284  287.20  251.00 277  281.00 
2  7200.00 302  259.20 369  403.40  251.20 318  322.40  251.00 303  304.20 
3  7200.00 252  254.40 308  319.20  439.00 258  269.00  444.00 253  254.80  

Medium 30–20-52 1  14400.00 568  995.60 820  886.00  919.80 555  560.40  962.00 532  545.20 
2  14400.00 758  1007.80 822  863.80  1065.40 586  599.00  1038.00 566  571.80 

35–16-25 1  14400.00 986  1560.60 1345  1419.40  1658.00 843  852.00  1683.80 804  815.60 
2  14400.00 798  1592.40 1254  1403.00  1700.00 818  836.40  1697.00 773  792.80 

40–20-52 1  14400.00 758  1490.60 1097  1232.80  1461.00 739  763.40  1528.60 708  718.60 
2  14400.00 848  1559.00 1157  1291.80  1543.20 753  774.00  1617.40 729  748.60  

Large 50–25-61 1  14400.00 690  1928.20 1135  1163.00  1874.60 692  705.00  2037.00 649  677.60 
2  14400.00 833  1970.20 1163  1221.20  1959.80 683  730.60  2127.00 669  685.40 

55–20-52 1  14400.00 1394  2566.80 1663  1696.60  2426.60 1017  1047.40  2553.00 926  954.20 
2  14400.00 1231  2354.80 1554  1584.60  2285.00 1003  1023.40  2474.40 956  1001.00 

60–25-61 1  14400.00 992  2669.00 1327  1425.40  2546.40 815  837.00  2615.60 791  804.40 
2  14400.00 1319  2935.60 1553  1583.20  2920.00 915  943.80  3030.40 869  892.60  

Table 6 
Relative deviation calculation.  

Scale Subcase Example Q1 Q2 Q3 

Small 5-16-25 1  0.00 %  − 6.12 %  − 0.46 % 
2  0.00 %  − 4.18 %  − 1.52 % 
3  1.13 %  − 8.48 %  − 2.05 % 

10-16-25 1  1.44 %  − 21.07 %  − 2.16 % 
2  0.73 %  − 24.59 %  − 5.65 % 
3  1.11 %  − 20.18 %  − 5.28 % 

Average relative deviation 0.74 % − 14.10 %  − 2.85 %  

Medium 30–20-52 1  − 4.01 %  − 38.47 %  − 2.71 % 
2  − 24.56 %  –33.80 %  − 4.54 % 

35-16-25 1  − 17.28 %  − 42.54 %  − 4.27 % 
2  − 0.65 %  − 43.49 %  − 5.21 % 

40-20-52 1  − 5.20 %  − 41.71 %  − 5.87 % 
2  − 11.72 %  − 42.05 %  − 3.28 % 

Average relative deviation − 10.57 % − 40.34 %  − 4.31 %  

Large 50-25-61 1  − 1.80 %  − 41.74 %  − 3.89 % 
2  − 17.72 %  − 43.87 %  − 6.19 % 

55-20-52 1  − 31.55 %  − 43.76 %  − 8.90 % 
2  − 18.68 %  − 36.83 %  − 2.19 % 

60-25-61 1  − 18.91 %  − 43.57 %  − 3.89 % 
2  –32.33 %  − 43.62 %  − 5.42 % 

Average relative deviation − 20.17 % − 42.23 %  − 5.08 %  
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capability of self-learning VNS. 
In general, MIP model targeting on MRFJSP-FPCO is unable to pro-

duce a high-quality solution within the ideal time in a complex scenario 
with complicated resources constraints as well as fixture-pallet combi-
natorial optimisation. Whereas IGA-FCSSVNS is able to find an excellent 
solution within a relatively short time, with the aid of feasibility 
correction strategy and self-learning VNS. 

6. Conclusion 

In this paper, we concentrate on a brand-new flexible job shop 
scheduling problem considering tri-resource constraints of fixture- 
pallet-machine, in which a MIP model is formulated, and an algorithm 
named IGA-FCSSVNS is proposed and tested. To ensure the legality of 
individuals during the entire iteration process, feasibility repair strate-
gies targeted at chromosome strings MS and FS are introduced. 
Furthermore, a self-learning variable neighbourhood search is achieved 
in the later stages of iteration through the establishment of knowledge 
matrixes and VNS repository. The effectiveness and superiority of IGA- 
FCSSVNS are verified through solving various examples under 
different scales based on real production scenarios from a leading engine 
manufacturer in China. 

Unlike common production scheduling, IGA-FCSSVNS not only ex-
ecutes optimal machine selection and sequence arrangement for 

operations, but also optimizes the combination of fixture-pallet re-
sources. It closely adheres to the actual production needs of workshop 
and has high potential for application in the era of intelligent 
transformation. 

In our study, there are several potential avenues to explore for future 
improvement. First, the set-up time of fixtures could be taken into 
consideration as it satisfies the real demand in factory, and it may vary 
with different types of products. In addition, further research is needed 
to address timely and reasonable dynamic response to abnormal con-
ditions in the flexible workshops. Finally, as the current research boom 
in the field of intelligent decision making, how to apply latest deep 
reinforcement learning methodology in combinatorial optimisation also 
deserves our attention. 
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