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Abstract—Circular production promotes economic growth
while conserving resources and energy. In this study, one aspect
of production systems, the repair loop of returned products,
is considered. The production system is composed of multiple
flexible workstations that can process returns with different
quality levels. This system aims to complete order production
and deliver it on time by optimizing the use of the given resource
levels. A sequential decision-making approach is employed
to obtain rolling production decisions over a finite planning
horizon. At each decision period, the manufacturer needs to
simultaneously determine the optimal repair allocation plans
for first returns and their potential second returns that will
be back after certain periods. For traceability and quality
reasons, a product at each return is required to be repaired
on the same workstation; otherwise, a penalty cost is imposed.
A stochastic mixed-integer programming model is developed
based on sample average approximation (SAA) method, where
the quality level of the second return is stochastic. Numerical
results demonstrate that the value of the stochastic solution is
significant compared with the average performance of solutions
obtained by the existing deterministic model. Useful guidelines
related to stochastic solutions and optimal capacity allocation
patterns are also provided for production practices.

Index Terms—Circular economy, repair loops, uncertain
return quality, sequential production decision-making, multiple
resources, stochastic mixed-integer programming.

I. INTRODUCTION

IN the conventional linear economy of production and
consumption, raw materials are processed into finished

final products, which are then sold to customers, used by
customers, and disposed of. The idea of the “circular econ-
omy” has gained significant traction in the political, business,
and public spheres in recent years. By extending the service
life of products through, for example, reuse of products in
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a suitable state, remanufacturing of returned products, and
recycling of raw materials, the circular economy seeks to
reduce wastes and the consumption of finite raw materials
[1].

One example for circular production systems comes from
automotive products like car engine. Returns with varying
quality levels have various characteristics and valuations in
the market. “As good as new” repaired engines whose condi-
tion is fully functional will be sold to the primary market to
produce new vehicles. Repaired engines with lower quality
level will be used for original equipment service/independent
aftermarket [2]. This implies that the values of resources
differentiate based on which quality level of returned product
it is used to process. In this context, industrial practitioners
struggle with identifying the quality of returns, differentiating
and optimizing the use of available resources to efficiently
satisfy customer demands with minimization of operational
costs. In addition, product traceability plays an important role
in quality management. Motivated by these prospects, in this
work we study the circular production decision problem on
first and their potential second returns simultaneously.

This work investigates short repair loop of circular produc-
tion with re-entrant flows. Repair is described as ‘bringing
back to working order’, ‘making it as good as new’, ‘recre-
ating its original function after minor defects’, ‘replacing
broken parts’ [1], [3], [4]. In the context of production
system explored here, production decisions include which
workstation and when first and second repairs for returns
should be processed. The objective is to fulfill the customers’
demand for repaired products as cost-effectively as possible.
Compared to traditional manufacturing systems, production
decisions are more complicated in circular production sys-
tems with re-entrant flows. This challenge raises in part
from the remanufacturer’s limited control over the input
flows of returned products from customers both in terms of
quantity and quality. In addition, to achieve product process-
ing information traceability, the input product flow of the
system is complexly coupled. The repair plans for products
of first returns and their corresponding second returns that
will be back after a period of time are optimized at the same
workstation at the same time.

The academia is paying increasing attention to production
decision problem in circular production systems. In general,
the optimal production quantities for each period are deter-



mined with the goal of either minimizing total costs including
production, inventory, disposal costs, and so on [3], [5],
or maximizing profit by optimizing the difference between
sales revenue and total costs [2], [8]. Ndhaief et al. [5]
study a production system consisting of one manufacturing
unit, one remanufacturing unit and a subcontractor. Literature
[3], [6], and [7] investigate a production planning/scheduling
problem for a remanufacturing system comprising multiple
stages, i.e., disassembly, refurbishing/reprocessing, and re-
assembly. Several practical stochastic factors, such as new
and reman product demand, uncertain quality of core returns,
remanufacturing cost, resource consumption, and so on, are
addressed in [3], [8], and [9]. Environmental issues, such as
optimization of carbon emissions, have also been discussed
by Ndhaief et al. [5] and Chang et al. [10] in manufacturing
and remanufacturing system. In the above mentioned works,
some models in [3], [6], and [7] optimize the production
plan for a single return cycle. Zhang et al. [6] and Jin et al.
[7] optimize a single return cycle across multiple resources.
New product and a single re-entrance flow are optimized on
a single resource by Ndhaief et al. [5] and Chang et al.
[10]. This work addresses the optimization of the multiple
return loops across multiple resources while retaining the
records of the resource processing history. We adapt the
model for appointment scheduling proposed in [11] for the
application in circular production systems with re-entrant
flows. Indeed, the circularity feature is in common with many
other applications such as healthcare, semi-conductor.

The main contributions of this study are summarized
as follows. First, we define the optimization problem of
production planning and allocation in repair loop production
systems over a multi-period horizon. This issue is meaningful
and deserves to be investigated to promote sustainable man-
ufacturing development. Second, through employing SAA
and a multi-period sequential decision-making approach, we
model and address the uncertainties about the return quality
such that different repair processes are considered. The
subscripts of workstation are introduced to formulate soft
constraints to ensure that the first and second repairs of one
returned product are assigned to the same workstation as
much as possible to track processing information. Third, the
value of the stochastic solution is illustrated compared with
existing production decision models. Practical implications
are reveled to better apply the proposed model and solution
in real-world production systems.

II. PROBLEM DESCRIPTION

We consider a make-to-order circular repair production
systems with re-entrant flows. The system is composed
of multiple parallel flexible production workstations. Each
workstation has a given capacity level to repair different
quality returns to satisfy customer demands. A single op-
eration for repairing returns with certain quality level is
carried out in a single workstation at any given time, or the
workstation is idle. We assume the return has three quality
levels. The quality order of levels 1 to 3 is: Q1>Q2>Q3.
Returns with varying quality levels require their own specific

repair operations. Variability in unit capacity consumption,
fixed setup and unit capacity overtime and idle cost has
been explicitly considered to imply the differences in repair
process of different quality returns. The higher the quality
level of the return, the lower unit capacity usage, fixed setup,
and unit capacity overtime and idle costs, and vice versa.
The order demand (i.e., Q1 returns with quality level one)
received at each period needs to be allocated to a certain
workstation on a certain period before the due date for the
first repair. After first repair, the Q1 returns are processed into
“as good as new” products and are delivered to the customer.
After a certain period when first-repair finished products enter
the market, some of them are returned to the manufacturer as
second return for second repair. Due to the impact of some
factors, such as customer usage habits and usage duration, the
associated quality of second return is uncertain to be quality
level Q2 or Q3. Returns with lower quality levels are returned
for longer interval, and vice versa. These returned products
requiring a second repair need to be assigned to a workstation
on a certain period for processing. After second repair, the
Q2 or Q3 returns are processed into finished products with
higher quality. The returns flow is shown as Fig. 1. To track
processing information, the first and second repair process
for the same one return need to be implemented on the same
workstation. Our goal is to create a production plan for this
system over a multi-period horizon with minimization of total
cost including setup cost, capacity overtime and idle cost, and
penalty cost related to processing information traceability.

Fig. 1. The returns flow in the problem.

III. MULTI-PERIOD STOCHASTIC MIXED INTEGER
PROGRAMMING METHOD

A. Multi-period Sequential Decision-making Approach

A manufacturer needs to make production plans for the
order received during R periods, indexed by r ∈ R =
{1, . . . , R}. The planning window includes H periods, in-
dexed by h ∈ H = {1, . . . ,H}. Therefore, each period in
the planning horizon at decision period r can be indexed by
t ∈ T = {r+1, . . . , r+H}. We use a multi-period sequential
decision-making framework to obtain the production plan. At
the beginning of period r, we can observe the information
on the number of process capacities for different quality
levels of returns of each workstation already assigned to
the returned products for first and second repairs on period
t ∈ T = {r + 1, . . . , r + H}. Then, the available process
capacities can be updated. During period r, the manufacturer
receives the order of returned products for first repair with



their potential returns for second repair. At the end of period
r, the optimization model is solved for a planning horizon of
H days to allocate the first returns of the order received at
period r and potential second returns to a specific workstation
j on a certain period. After that, the plan created for period
r+1 is put into action. Prior to solving the model on period
r+1 for the following H periods, the newly arising order is
gathered and the available capacities are updated. On period
r+2, the plan already generated is executed. After capacity
and order have been updated appropriately, the model is
solved again for the next H periods. For the remaining stages
of the R decision horizons, this pattern is replicated.

B. SAA-based Stochastic Programming Model Formulation
A manufacturer repairs one type of returned product with

different quality levels through its J flexible workstations,
indexed by j ∈ J = {1, . . . , J}. Each workstation j ∈
J = {1, . . . , J} has a fixed setup cost ciu, i = 1, 2, 3
for repairing Qi, i = 1, 2, 3 returns and can perform
repair operations for Qi, i = 1, 2, 3 returns at period
t ∈ T = {r + 1, . . . , r +H} denoted by αjt, βjt, and γjt.
αjt, βjt, and γjt is a capability parameter that equals one
if workstation j is set up to repair a returned product with
quality level Qi, i = 1, 2, 3 at period t, and zero otherwise.
Each workstation j has a regular production capacity cjt at
period t, and allocates cijt, i = 1, 2, 3 available capacity for
repairing Qi, i = 1, 2, 3 returns at period t, respectively.
Each Qi, i = 1, 2, 3 return requires dij , i = 1, 2, 3 units
of processing capacity for repairing operation at workstation
j, respectively.

At the beginning of a decision period r, the manufac-
turer receives a customized returned product order from the
customer for the first repair. A set of I1 returns with a
given committed delivery date M1 of the order will return
for second repair M2

i1
periods after the customer receives

the first-repair finished products. The remaining set of I2
returns with a given committed delivery date M2 will not
return to the manufacturer again. The quality level of returned
product i1∈ I1 for second repair is uncertain to be Q2 or
Q3 such that the repair process required by the return is
uncertain. We use stochastic programming approach to model
the decision-making problem under uncertainty. The random
vector of the quality of second return is denoted by ξ. It is
assumed that ξ is drawn from the distribution F . The solution
methods for this problem typically depend on either assuming
a prior distribution for F or utilizing a set of independent
and identically distributed (i.i.d.) observations. We use the
latter case, a set of i.i.d. observations of the random vector ξ,
denoted by S : ={ξi}Si=1, to formulate the stochastic mixed-
integer programming based on SAA [12]. We assume that the
observed data follows a Bernoulli distribution. Let ksi1 denote
i1th component of the random vector in scenario s, where
ksi1 = 1 if the quality level of second return i1 is Q2, and
ksi1 = 0 if it is Q3. The amount of time M2

i1
for a customer to

return a Q2 (Q3) product for second repair is between af (ap)
and af (ap). To promptly respond to customer demands,
in this make-to-order system, we assume that there is no

inventory of the returned product. The manufacturer arranges
repair processing once the returned product is received. In
addition, the system has no finished product inventory. Once
the product has completed the repair process, it will be
delivered to the customer.

At the end of a decision period r, the following decisions
need to be made by the manufacturer: (1) assign Q1 returns
in set I1 and I2 to workstation j on period t for first repair,
denoted by binary variable x1

i1jt
and x2

i2jt
, respectively; (2)

assign return i1 with quality level Q2 and Q3 to workstation
j for second repair on period t in scenario s, denoted by
binary variable ysi1jt and zsi1jt, respectively; Then, the indirect
decisions are made: (3) workstation j’s overtime processing
capacity required to complete the assigned repair tasks of
Qi, i = 1, 2, 3 returns on period t in scenario s, denoted
by continuous variables oisjt, i = 1, 2, 3; (4) workstation
j’s idle processing capacity after finishing its repair tasks of
Qi, i = 1, 2, 3 returns on period t in scenario s, denoted
by continuous variables visjt, i = 1, 2, 3.

We divide the above decisions that need to be made into
two stages, similar in [13]. Among them, x1

i1jt
and x2

i2jt

are the first stage decisions to plan first repair which do not
depend on stochastic parameters, i.e., the quality of second
returns. Variables with subscript s, ysi1jt, z

s
i1jt

, oisjt, and visjt,
are the second stage decisions which depend on stochastic
parameters. The second repair plan, capacity overtime and
idle are determined in second stage. The first stage decision
will affect the decisions in the second stage. The objective
function is to minimize the total cost consisting of repair
setup cost for processing Qi, i = 1, 2, 3 returns, capacity
overtime and idle cost, and penalty cost. Let cib, i = 1, 2, 3
denote a unit overtime or idle cost of workstation performing
repair operations for Qi, i = 1, 2, 3 returns, respectively.
To ensure that product processing information is traceable,
a penalty is imposed if the second repair of the Q2 or Q3

return cannot be performed by the same workstation as in
their first repair, with a unit penalty cost cfp and cpp.

Then, we establish a stochastic mixed-integer program-
ming based on SAA. The constraints (1)-(21) and objective
function (25) of the mathematical model are formulated in
the following.

(a) Product assignment constraints: The below constraints
ensure that each returned product for first repair and second
repair will be assigned to one workstation on one period.

∑
j∈J

r+H∑
t=r+1

x1
i1jt = 1,∀i1 ∈ I1, (1)

∑
j∈J

r+H∑
t=r+1

x2
i2jt = 1,∀i2 ∈ I2, (2)

∑
j∈J

r+H∑
t=r+1

ysi1jt = ksi1 ,∀i1 ∈ I1,, s ∈ S, (3)

∑
j∈J

r+H∑
t=r+1

zsi1jt = 1− ksi1 ,∀i1 ∈ I1, s ∈ S. (4)



(b) Processing setup constraints: The assignment variable
x1
i1jt

, x2
i2jt

, ysi1jt, and zsi1jt can only be possibly 1 if and
only if workstation j is setup to be capable of performing
repair operations for Qi, i = 1, 2, 3 returns at period t.
This relationship can be expressed as follows:

x1
i1jt ≤ αjt,∀i1 ∈ I1, j ∈ J , t ∈ T , (5)

x2
i2jt ≤ αjt,∀i2 ∈ I2, j ∈ J , t ∈ T , (6)

ysi1jt ≤ βjt,∀i1 ∈ I1, j ∈ J , t ∈ T , s ∈ S, (7)

zsi1jt ≤ γjt,∀i1 ∈ I1, j ∈ J , t ∈ T , s ∈ S. (8)

(c) Returned interval requirements: After M2
i1

period when
the first-repair finished product enters the market, it returns
the manufacturer again with Q2 or Q3 quality for second
repair. M2

i1
∈ [af , af ] (M2

i1
∈ [ap, ap]) if the quality level

of second return is Q2 (Q3). The following constraints ensure
the second return to be back and allocated in the anticipated
time window for second repair.

∑
j∈J

r+H∑
t=r+1

tysi1jt ≥
∑
j∈J

r+H∑
t=r+1

tx1
i1jt + af

−M
(
1− ksi1

)
, ∀i1 ∈ I1, s ∈ S, (9)

∑
j∈J

r+H∑
t=r+1

tysi1jt ≤
∑
j∈J

r+H∑
t=r+1

tx1
i1jt + af

+M
(
1− ksi1

)
, ∀i1 ∈ I1, s ∈ S, (10)

∑
j∈J

r+H∑
t=r+1

tzsi1jt ≥
∑
j∈J

r+H∑
t=r+1

tx1
i1jt + ap

−Mksi1 , ∀i1 ∈ I1, s ∈ S, (11)

∑
j∈J

r+H∑
t=r+1

tzsi1jt ≤
∑
j∈J

r+H∑
t=r+1

tx1
i1jt + ap

+Mksi1 , ∀i1 ∈ I1, s ∈ S. (12)

where M represents a large number.
(d) Delivery time constraints: The completion time of the

first repair of the returned products cannot be longer than the
product’s due date in order to guarantee on-time delivery, that
is,

∑
j∈J

r+H∑
t=r+1

tx1
i1jt ≤ M1, ∀i1 ∈ I1, (13)

∑
j∈J

r+H∑
t=r+1

tx2
i2jt ≤ M2, ∀i2 ∈ I2. (14)

(e) Overtime and idle time calculation: Each workstation’s
repair overtime and idle capacity for processing Qi, i =
1, 2, 3 returns can be constrained and calculated as follows,

o1sjt ≥
∑
i1∈I1

d1jx
1
i1jt +

∑
i2∈I2

d1jx
2
i2jt − c1jtαjt,

∀j ∈ J , t ∈ T , s ∈ S, (15)

v1sjt ≥ c1jtαjt −
∑
i1∈I1

d1jx
1
i1jt −

∑
i2∈I2

d1jx
2
i2jt,

∀j ∈ J , t ∈ T , s ∈ S, (16)

o2sjt ≥
∑
i1∈I1

d2jy
s
i1jt − c2jtβjt, ∀j ∈ J , t ∈ T , s ∈ S, (17)

v2sjt ≥ c2jtβjt −
∑
i1∈I1

d2jy
s
i1jt, ∀j ∈ J , t ∈ T , s ∈ S, (18)

o3sjt ≥
∑
i1∈I1

d3jz
s
i1jt − c3jtγjt, ∀j ∈ J , t ∈ T , s ∈ S, (19)

v3sjt ≥ c3jtγjt −
∑
i1∈I1

d3jz
s
i1jt, ∀j ∈ J , t ∈ T , s ∈ S. (20)

(f) Decision variables ranges definition: The following con-
straints define the integrality and non-negativity restrictions
on the decision variables.

x1
i1jt, x

2
i2jt, ysi1jt, zsi1jt ∈ {0, 1} , oisjt, visjt ≥ 0,

∀i1 ∈ I1, i2 ∈ I2, j ∈ J , i = 1, 2, 3,

t = r + 1, . . . , r +H, s ∈ S. (21)

(g) Objective function: The total process capacity over-
time and idle cost of first and second repair operations for
Qi, i = 1, 2, 3 returns for all workstations and all periods
in the planning horizon at decision period r in scenario s is
expressed as follows:

TCs
ov =

∑
j∈J

∑
t∈T

3∑
i=1

cib(o
is
jt + visjt) (22)

The sum of setup cost of repair operations for Qi, i =
1, 2, 3 returns for all workstations and all periods is
expressed as follows:

TCu =
∑
j∈J

∑
t∈T

c1uαjt + c2uβjt + c3uγjt (23)

We model soft constraints to ensure the second repair of
one return is processed at the same workstation as in its first
repair. A penalty term is added to the objective function if
this condition is not met. The total penalty cost in scenario
s for all returns is expressed as follows:



TCs
p =

∑
i1∈I1

∑
j∈J

cfpk
s
i1 (

∑
t∈T

ysi1jt −
∑
t∈T

x1
i1jt)

2

+ cpp(1− ksi1)(
∑
t∈T

zsi1jt −
∑
t∈T

x1
i1jt)

2 (24)

The objective function is to minimize the total expected
cost encompassing repair setup cost, capacity overtime and
idle cost, and penalty cost as presented below:

min

S∑
s=1

ps(TC
s
ov + TCu + TCs

p) (25)

IV. NUMERICAL EXPERIMENTS

The above approach is conducted by using Gurobi 10.0.3
on a personal computer with a 2.40 GHz Intel Core i7-
13700H and 16 GB of memory. Gurobi parameters use
default settings, except MIPFocus is set to 3. First, we present
basic data settings and design numerical experiments. Then,
we conduct experiments to compare the performance of the
proposed stochastic programming model and the determin-
istic model. Finally, we provide practical implications for
better use of the proposed stochastic programming model
and solution.

A. Data Settings

We introduce our basic data settings in this section. We
use “pu” to denote the process capacity unit and “mu” to
denote the monetary unit. For the period-related parameters,
we set R = 5, H = 8, M1 = 3, M2 = 6, af = 2, af = 3,
ap = 4, and ap = 5, respectively. Each period receives orders
including 20 units of first returns that will require a second
repair (I1) and 10 units of first returns that will not require
a second repair (I2). The number of workstations is set to
3 and each workstation is well equipped to be capable of
repairing Qi, i = 1, 2, 3 returns, i.e., αjt = βjt = γjt =
1,∀ j ∈ J , t ∈ T . Each workstation has a regular total
process capacity level cjt = 680 pu. Since some capacity
is occupied by pre-arranged products before planning, each
workstation has no available capacity for Q2 returns during
the first two periods and no available capacity for Q3 returns
during the first four periods. Each workstation has a capacity
of 150 pu for Q2 returns and 280 pu for Q3 returns in the
subsequent periods. In terms of repair capacity for Q1 returns,
we set c1jt = 250 pu, ∀ j ∈ J , t = r + 1, . . . , r +H . We
set d1j = 60 pu, d2j = 90 pu, and d3j = 150 pu. For the
cost parameters, c1u = c1b = 1 mu, c2u = c2b = 2 mu, and
c3u = c3b = 3 mu respectively. cfp and cpp take value as 1 mu
and 1.5 mu, respectively.

B. The Value of the Stochastic Solution

Based on the above basic parameter settings, we investigate
three cases with three levels of the probability that the quality
level of the second return is Q2, i.e., pi1= 0.4, 0.5 and 0.6.
For each case, eight instances are included, and six scenarios

are randomly generated in each instance. Table I shows the
comparison results of objective value for different solutions.
The objective values of solutions obtained by the proposed
stochastic programming model are summarized in the ”SP-
SAA” row. The ”DM” row summarizes the average objective
values from the existing deterministic model, with their
associated standard deviation in the ”Stdev” row. Keeping
the remaining parameters unchanged, the deterministic model
is solved for each scenario in each instance. Then, we use
the proposed stochastic programming model to solve each
instance. In all 24 instances across 3 cases, the objective
values of SP-SAA are lower than the average objective values
from DM. Assuming that the data are normal, the limits
of the intervals are computed using quantiles of a normal
distribution with a 95% confidence interval. Every interval
result in this article is obtained using the same methodology
[14]. The solution provided by stochastic programming can
bear an average cost of 17017 mu, 15018 mu, and 14771
mu for Case 1, Case 2, and Case 3 respectively. It is 6.6%,
9.4% and 9.8% lower than the average cost of the solution
yielded by deterministic model for 3 cases, respectively.
The p-values of the two-sample t-test for the stochastic
solutions and deterministic solutions across three cases are
0.036, 0.0005, and 0.011, all less than the significance level
of 0.05. The aforementioned results demonstrate that the
stochastic solutions perform statistically significantly better
than the average performance of solutions obtained by the
deterministic model under different scenarios.

C. Practical Implications

We offer industrial practitioners guidelines for imple-
menting stochastic programming solutions. Practitioners im-
plement consistent first-stage repair decisions, then receive
and assess second returns to align actual quality with pre-
considered scenarios, implementing corresponding second
repair decisions. Alternatively, the model can be re-optimized
based on actual return quality. The objective value of stochas-
tic programming represents expected performance, but its
achievability is uncertain.

Some managerial insights are also provided by discussing
the solutions for the aforementioned 3 cases, where the
demand is redesigned to vary with the time period but
maintains an average level of I1 = 20 and I2 = 10. Fig.
2 illustrates the results of capacity allocation in the three
cases. For each case, the optimal capacity allocation generally
exhibits the inverted parabola pattern, where the capacity first
increases, then decreases. And the peak of Case 1 appears
earlier than the peaks of Cases 2 and 3. The capacity peak
allocated to Q1 returns appears the earliest, followed by Q2

returns, with Q3 returns exhibiting the latest. The difference
is that in the three cases, as the number of Q2 returns
increases, more capacity is allocated to Q2, and less capacity
is allocated to Q3 in the optimal solution with a lower total
cost. Practitioners can typically allocate capacity based on
the above insights, even without solving the problem.



TABLE I
THE COMPARISON RESULTS OF SOLUTION PERFORMANCE

Case pi1 Method I1 I2 I3 I4 I5 I6 I7 I8 Average 95% CI

1 0.4
DM 18159 18864 16521 19070 17832 18002 18421 18910 18222 [16609, 19836]

Stdev 2109 1190 1521 2062 1445 1476 1882 1865
SP-SAA 17356 18100 15302 18176 15495 17032 18335 16340 17017 [14665, 19369]

2 0.5
DM 16357 15893 15924 16702 17232 18037 16278 16232 16582 [15152, 18012]

Stdev 954 1056 1624 1374 1893 2340 1225 1165
SP-SAA 13748 14835 15134 15917 14911 15424 14554 15624 15018 [13688, 16349]

3 0.6
DM 14829 15163 15822 17886 17725 16067 15951 16263 16213 [14073, 18354]

Stdev 541 783 1295 4408 2611 2066 1409 2471
SP-SAA 14390 14953 14218 16785 14009 14673 14486 14651 14771 [13077, 16464]

Fig. 2. The results of capacity allocation in the three cases.

V. CONCLUSION

This work investigates a make-to-order circular production
system with multiple parallel workstations, ensuring that first
and second repairs for returns occur at the same workstation.
The aim is to minimize overtime and idle capacity while
maintaining processing traceability. The production planning
and allocation problem is formulated as a SAA based stochas-
tic mixed-integer programming model to address quality
uncertainty in second returns.Two stage decision variables are
introduced to determine the allocation of two repairs for a re-
turn to a workstation at a period. Rolling plans are generated
using a sequential decision-making framework to determine
the production plan over a finite horizon. Numerical results
illustrate the value of the solutions obtained by proposed
stochastic model compared with the deterministic solutions.
Problem-oriented management insights are also explored by
investigating various cases to guide practical applications. To
fairly compare the performance of the proposed stochastic
solutions with the deterministic solutions, in this paper, the
cases studied can be considered as small-scale problems
such that the exact solution of the proposed SAA based
stochastic programming model is obtained using Gurobi. The
numerical cases can be easily extended to medium and large
problem scales for practical applications but only feasible
solutions can be provided. In the future work, efficient exact
or heuristic algorithms will be developed to solve large
scale problem. Production planning and allocation problems
for multiple orders, multiple times returns, and different
objectives can also be studied. In addition, we will develop

robust optimization or distributionally robust optimization
model for the problem to address the limitations in stochastic
programming model.
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